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SUMMARY 
 

In order to understand how high performance computing (HPC) programs are developed, a 
series of experiments, using students in graduate level HPC classes and various research centers, 
were conducted at various locations in the US. In this report, we discuss this research, give some 
of the early results of those experiments, and describe a web-based Experiment Manager and 
related tools we are developing that allows us to run studies more easily and consistently at 
universities and laboratories, allowing us to generate results that more accurately reflect the 
process of building HPC programs. 

This type of empirical research is novel for the HPC community however, so prior to 
conducting rigorous full fractional factorial experiments with professionals, we ran a pilot 
studies to debug the experimental methods and techniques. Our first research activity was 
running a pre-pilot study aimed at understanding the issues involved and debugging our methods. 
The setting for the pre-pilot study was a graduate level High Performance Computing class 
taught by Jeffrey K. Hollingsworth at the University of Maryland. The students in this class were 
taught the concepts associated with HPC, so it was an ideal place to begin evaluating the 
performance of novice HPC developers. For most of the students in the class, it was their first 
time developing a HPC software application. Fifteen students took part in the study, which 
consisted of two assignments. In the first assignment, students were to create a sequential and 
then a parallel solution using MPI for the “Game of Life” problem. Subjects were graded on, and 
hence had incentive to focus on, the correct performance of both sequential and parallel versions 
and the amount of speed-up achieved for the parallel version. In a second assignment, subjects 
switched to OpenMP and had to devise a parallel version of the SWIM benchmark. Over 4 years, 
we ran some 25 different studies in a variety of university settings in order to characterize the 
development process for building HPC programs. 

How time is measured can have a pronounced impact on the interpretation of results. We 
have been conducting empirical studies to characterize how different variables affect 
programmer effort in the domain of high performance computing. In the context of these studies, 
we have sought a measure of effort that is both accurate and complete (i.e., captures all 
programmer activities well). We show how a combination of self-reported and automatic 
measures of effort data can be used for assessing confidence in results and estimating total effort.  

To learn more about the process of developing software to run on HPC systems, we studied 
five different software projects that develop such codes. These projects make up a group of 
research centers known as the ASC-Alliance centers. Each center owns a large software project 
which is focused on addressing a different problem in computational science. These centers are 
provided with access to large-scale HPC systems located at various supercomputing centers.  

To study these projects, we conducted interviews with high-level members of each project. 
These project members were all involved in project management, software architecture, or 
software integration.  Our goals were to characterize product, project organization, and process, 
both in terms of using the software and developing the software, and to identify particular 
challenges faced by the developers. Note that we use the terms “developer”, “scientist”, and 
“programmer” interchangeably in this report. 
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We evolved the Experiment Manager framework to mitigate the complexities of conducting 
the above mentioned experiments. The framework is an integrated set of tools to support 
software engineering experiments in HPC classroom (or professional) environments. While 
aspects of the framework have been studied by others, the integration of all features allows for a 
uniform environment that has been used in over 25 classroom studies over the past 4 years.  The 
framework supports the following. 

1. Minimal disruption of the typical programming process. Study participants solve 
programming tasks under investigation using their typical work habits, spreading out 
programming tasks over several days. The only additional activity required is filling out some 
online forms. Since we do not require them to complete the task in an alien environment or work 
for a fixed, uninterrupted length of time, we minimize any negative impact on pedagogy or 
subject overhead.  

2. Consistent instruments and artifacts. Use of the framework ensures that the same types of 
data will be collected and the same types of problems will be solved, which increases confidence 
in meta-analysis across studies at different universities. 

3. Centralized data repository with web interface. The framework provides a simple, 
consistent interface to the experimental data for experimentalists, subjects, and collaborating 
professors. This reduces overhead for all stakeholders and ensures that data is consistently 
collected across studies. 

4. Sanitization of sensitive data. The framework provides external researcher with access to 
the data sets that have been stripped of any information that could identify subjects, to preserve 
anonymity and comply with the protocols of human subject research as set out by Institutional 
Review Boards (IRBs) at American universities.  
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1  INTRODUCTION 
 

 The basic goal of the Defense Advanced Research Projects Agency (DARPA) High 
Productivity Computing System (HPCS) program is to create a new generation of high 
performance computers operating in the petascale range in number of FLOPS (1015 floating point 
operations per second). The program began in July 2001 when DARPA planned an 
approximately 10-year program to build a petascale machine [1]. The role of productivity has 
had a checkered history since that time. 

During the initial phase from 2001 until 2004, Five vendors (IBM, SGI, Cray, HP and Sun) 
were involved in initial design activities. The goal for these new machines, and new languages to 
execute on them, was a ten-fold improvement in both execution time and development time as 
measured from the start of the program. 

In 2004 at the start of Phase II, the number of vendors was reduced to three (IBM, Cray and 
Sun) and the concept of productivity was changed. Led by Dr. Jeremy Kepner of Mitre, the 
University of Maryland became involved and our role in HPCS began in the summer of 2004. 
Pure counting of Floating Point Operations per Second (FLOPS) was recognized as not a valid 
criteria for measuring productivity. Few programs achieve sustained execution rates at these high 
levels – often achieving only 5%-10% of those peak performance rates. In addition, the time and 
effort to build the programs to run on these machines was not part of the equation. Therefore, the 
phrase “Time to solution = Development time + Execution time” became the catchword for 
measuring productivity. The problem to solve, however, was what does “Development time” 
really mean in the high performance computer arena? 

In March of 2005 this initial 3-year grant started when the University of Maryland, aided by 
the Fraunhofer Center for Experimental Software Engineering and Mississippi State University, 
began to work with Dr. Kepner and his productivity team in order to understand the mechanisms 
involved in building high performance codes.  Our approach was to develop methods that could 
be used to establish baseline productivity measures to measure the 2002 productivity as well as 
the productivity for these new machines when they became operational in the 2010-2012 
timeframe. 

1.1 Approach toward this research 
 
The HPCS program has goals of “providing a new generation of economically viable high 

productivity computing systems for national security and for the industrial user community,” and 
initiating “a fundamental reassessment of how we define and measure performance, 
programmability, portability, robustness and ultimately, productivity in the High Performance 
Computing (HPC) domain”1. 

In order to reassess the definitions and measures in a scientific domain it is necessary to study 
the basis and source of those definitions and measures. These sources are usually found in the 
related literature and various documentations existent in the community. However the large 
amount of tacit information that is merely in people’s minds often remains neglected. 

                                                 
1 http://www.highproductivity.org 

http://www.highproductivity.org
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Historically, there has been little interaction between the HPC and the software engineering 
communities. The Development Time Working Group of the HPCS project was focused on 
development time issues. The group has both software engineering researchers as well as HPC 
researchers. The strategy of the working group was to apply empirical methods to study parallel 
programming issues. We have applied similar methods in the past to researching development 
time issues in other software domains [2]. 

Much of the literature in the Software Engineering community concerning programmer 
productivity was developed with assumptions that do not necessarily hold in the HPC 
community: 
1. In scientific computation insights culled from results of one program version often drives the 

needs for the next.  The software itself is helping to push the frontiers of understanding rather 
than the software being used to automate well-understood tasks.  

2. The requirements often include conformance to sophisticated mathematical models. Indeed, 
requirements may often take the form of an executable model in a system such as 
Mathematica, and the implementation involves porting this model to HPC systems.  

3. "Usability" in the context of an HPC application development may revolve around 
optimization to the machine architecture so that computations complete in a reasonable 
amount of time. The effort and resources involved in such optimization may exceed initial 
development of the algorithm.   

Due to these unique requirements, traditional software engineering approaches for improving 
productivity may not be directly applicable to the HPC environment.  

As a way to understand these differences, we are developing a set of tools and protocols to 
study programmer productivity in the HPC community.  Our initial efforts have been to 
understand the effort involved and defects made in developing such programs. We also want to 
develop models of workflows that accurately explain the process that HPC programmers use to 
build their codes. Issues such as time involved in developing serial and parallel versions of a 
program, testing and debugging of the code, optimizing the code for a specific parallelization 
model (e.g., Message Passing Interface (MPI) [3],  Open Multi-processing (OpenMP) [4]) and 
tuning for a specific machine architecture are all topics of study. If we have those models, we 
can then work on the more crucial problems of what tools and techniques better optimize a 
programmer’s performance to produce quality code more efficiently.  

Since 2004 we have been conducting human-subject experiments at various locations across 
the U.S. in graduate level HPC courses and with interviews with professional programmer at 
HPC centers (Figure 1). Graduate students in a HPC class are fairly typical of a large class of 
novice HPC programmers who may have years of experience in their application domain but 
very little in HPC-style programming. Multiple students are routinely given the same assignment 
to perform, and we conduct experiments to control for the skills of specific programmers (e.g., 
experimental meta-analysis) in different environments.  Due to the relatively low costs, student 
studies are an excellent environment to debug protocols that might be later used on practicing 
HPC programmers.   
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1.2 Classroom as software engineering lab 
 
The classroom is an appealing environment for conducting software engineering 

experiments, for several reasons: 
• Most researchers are located at universities. Being close to your subjects is often necessary to 

obtain accurate results. 
• Training can be integrated into the course. No extra effort is then required by the subjects 

since there is the assumption that the training is a valuable academic addition to the 
classroom syllabus. 

• Required tasks can be integrated into the course. 
• All subjects are performing identical programming tasks, which is not generally true in 

industry. This provides an easy source for replicated experiments. 
In addition to the results that are obtained directly by these studies, such experiments are also 

useful for piloting experimental designs and protocols which can later be applied to industry 
subjects, an approach which has been used successfully elsewhere (e.g., [5] [6] [7]). 

While there are threats to validity of such studies by using students as subjects as proxies for 
professional programmers (e.g., the student environment may not be representative of the ones 
faced by professional programmers), there are additional complexities that are specific to 
research in this type of environment. We encountered each of these issues when conducting 
research on the effects of parallel programming model on effort in high-performance computing 
[8]: 
      1. Complexity. Conducting an experiment in a classroom environment is a complex process 
that requires many different activities (e.g., planning the experimental design, identifying 
appropriate artifacts and treatments, enrolling students, providing for data collection, checking 
for process compliance, sanitizing data for privacy, analyzing data). Each such activity identifies 
multiple points of failure, thus requiring a large effort to organize and run multiple studies. If the 
study is done at multiple universities in collaboration with other professors, these professors may 
have no experience in organizing and conducting such experiments. 
       2. Research vs. pedagogy. When the experiment is integrated into a course, the 
experimentalist must take care to balance research and pedagogy [9]. Studies must have minimal 
interference with the course. If the students in one class are divided up into treatment groups and 
the task is part of an assignment, then care must be taken to ensure that the assignment is of 
equivalent difficulty across groups. Students who consent to participate must not have any 
advantage or disadvantage over students who do not consent to participate, which limits 
additional overhead required by the experiment. In fact, each university’s Institutional Review 
Board (IRB), required in all USA universities performing experiments with human subjects, and 
insists that participation (or non-participation) must have no effect on the student’s grade in the 
course. 
       3. Consistent replication across classes. To build empirical knowledge with confidence, 
researchers replicate studies in different environments. If studies are to be replicated in different 
classes, then care must be taken to ensure that the artifacts and data collection protocols are 
consistent. This can be quite challenging because professors have their own style of giving 
assignments. Common projects across multiple locations often differ in crucial ways making 
meta-analysis of the combined results impossible [10].  
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      4. Participation overhead for professors. In our experience, many professors are quite 
willing to integrate software engineering studies into their classroom environment. However, for 
professors who are unfamiliar with experimental protocols, the more effort required of them to 
conduct a study, the less likely it will be a success. In addition, collaborating professors who are 
not empirical researchers may not have the resources or the inclination to monitor the quality of 
captured data to evaluate process conformance. Therefore, empirical researchers must try to 
minimize any additional effort required to run an empirical study in the course while ensuring 
that data is being captured correctly. 

The required IRB approval, when attempted for the first time, seems like a formidable task. 
Help in understanding IRB approval would greatly aid the ability of conducting such research 
experiments. 
      5. Participation overhead for students. An advantage of integrating a study into a 
classroom environment is that the students are already required to perform the assigned task as 
part of the course, so the additional effort involved in participating in the study is much lower 
than if subjects were recruited from elsewhere. However, while the additional overhead is low, it 
is not zero. The motivation to conform to the data collection process is, in general, much lower 
than the motivation to perform the task, because process conformance cannot be graded. In 
addition, the study should not subvert the educational goals of the course. Putting the experiment 
in the context of the course syllabus is never easy. 

This can be particularly problematic when trying to collect process data from subjects (e.g. 
effort, activities, defects), especially for assignments that take several weeks. (e.g., We saw a 
reduction in process conformance over time when subjects had to fill out effort logs over the 
course of multiple assignments).  
      6. Automatic data collection of software process. To reduce subject overhead and increase 
data accuracy, it is possible to collect data automatically from the programmer’s environment. 
Capturing data at the right level of granularity is difficult. All user-generated events can be 
captured (keyboard events, mouse events), but this produces an enormous volume of data that 
may not abstract to useful information. Allowing this raw data to be used can create privacy 
issues, such as revealing account names, with the ability to then determine how long specific 
users took to build a product or how many defects they made. 

All development activities taking place within a particular development environment (e.g., 
Eclipse [11]) simplifies the task of data collection, and tools exist to support such cases (e.g. 
Marmoset [12]). However, in many domains development will involve a wide range of tools and 
possibly even multiple machines. For example in the domain of high-performance computing, 
preliminary programs may be compiled on a home PC, final programs are developed on the 
university multiprocessor and are ultimately run on remote supercomputers at a distant 
datacenter. Programmers typically use a wide variety of tools, including editors, compilers, build 
tools, debuggers, profilers, job submission systems, and even web browsers for viewing 
documentation. 
     7. Data management. Conducting multiple studies generates an enormous volume of 
heterogeneous data. Along with automatically collected data and manually reported data, 
additional data includes versions of the programs, pre- and post-questionnaires, and various 
quality outcome measures (e.g. grades, code performance, defects). Because of privacy issues, 
and to conform to IRB regulations, all data must be stored with appropriate access controls, and 
any exported data must be appropriately sanitized. Managing this data manually is labor-
intensive and error-prone, especially when conducting studies at multiple sites.   
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Limitations of student studies include the relatively short programming assignments possible 
due to the limited time in a semester and the fact these assignments must be picked for the 
educational value to the students as well as their investigative value to the research team. 

Figure 1: Studies conducted 
 
 
In this report, we present both the methodology we have developed to investigate 

programmer productivity issues in the HPC domain (Section 2), some initial results of studying 
productivity of novice HPC programmers (Section 3). 
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2 EXPERIMENTAL METHODOLOGY 
 

In each class, we obtained consent from students to be part of our study. There is a 
requirement at every U.S. institution that studies involving human subjects must be approved by 
that university’s Institutional Review Board (IRB). The nature of the assignments was left to the 
individual instructors for each class since instructors had individual goals for their courses and 
the courses themselves had different syllabi.  However, based on previous discussions as part of 
this project, many of the instructors used the same assignments (Table 1), and we have been 
collecting a database of project descriptions as part of our Experiment Manager website (See 
Section 3.1). To ensure that the data from the study would not impact students’ grades (and a 
requirement of almost every IRB), our protocol quarantined the data collected in a class from 
professors and teaching assistants for that class until final grades had been assigned.  

 
Table 1: Sample programming assignments 

Embarrassingly parallel: 
 Buffon-Laplace needle problem, Dense matrix-vector multiply 
Nearest neighbor: 
Game of life, Sharks & fishes, Grid of resistors, Laplace's equation, Quantum 
dynamics 
All-to-all: 
Sparse matrix-vector multiply, Sparse conjugate gradient, Matrix power via prefix 
Shared memory: 
LU decomposition, Shallow water model, Randomized selection, Breadth-first search 
Other: 
Sorting 

 
We need to measure the time students spend working on programming assignments with the 

task that they are working on at that time (e.g. serial coding, parallelization, debugging, tuning).  
We used three distinct methods: (1) explicit recording by subject in diaries (either paper or web-
based); (2) implicit recording by instrumenting the development environment; and (3) sampling 
by an operating system installed tool (e.g., Hackystat [13]). Each of these approaches has 
strengths and limitations. But significantly, they all give different answers.  After conducting a 
series of tests using variations on these techniques, we settled on a hybrid approach that 
combines diaries with an instrumented programming environment that captures a time-stamped 
record of all compiler invocations (including capture of source code), all programs invoked by 
the subject as a shell command, and interactions with supported editors.  Elsewhere [14], we 
describe the details of how we gather this information and convert it into a record of programmer 
effort. 

After students completed an assignment, the data was transmitted to the University of 
Maryland, where it was added to our Experiment Manager database. Looking at the database 
allows post-project analysis to be conducted to study the various hypotheses we have collected 
via our folklore collection process. 
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For example, given workflow data from a set of students, the following hypotheses that are 
the subjective opinion of many in the HPCS community, collected via surveys at several HPCS 
meetings, can be tested [15]: 

Hypothesis 1: The average time to fix a defect due to race conditions will be longer in a 
shared memory program compared to a message-passing program. To test this hypothesis we 
can measure the time to fix defects due to race conditions. 

Hypothesis 2: On average, shared memory programs will require less effort than message 
passing, but the shared memory outliers will be greater than the message passing outliers. To 
test this hypothesis we measure the total development time. 

Hypothesis 3:  There will be more students who submit incorrect shared memory programs 
compared to message-passing programs. To test this hypothesis we can measure the number of 
students who submit incorrect solutions. 

Hypothesis 4:  An MPI implementation will require more code than an OpenMP 
implementation. To test this hypothesis we can measure the size of code for each mplementation. 

The classroom studies are the first part of a larger series of studies we are conducting (Figure 
2).  We first run pilot studies with students.  We next conduct classroom studies, and then move 
onto controlled studies with experienced programmers, and finally conduct experiments in situ 
with development teams. Each of these steps contributes to our testing of hypothesizes by 
exploiting the unique aspects of each environment (i.e., replicated experiments in classroom 
studies and multi-person development with in situ teams).  We can also compare our results with 
recent studies of existing HPC codes [16]. 

 

 
Figure 2: Research plan 



 

8 

2.1 Collection of folklore data 
 

One of the main goals of the development time working group of HPCS project is to leverage HPC community’s 
HPC community’s knowledge of development time issues ( 

Figure 3). In order to do so, we are soliciting expert opinion on issues related to HPC 
programming by collecting elements of folklore through surveys, generating discussion among 
experts on these elements of the lore to increase precision of statements and to measure degree of 
consensus and finally generate testable hypotheses based on the lore that can be evaluated in 
empirical studies. 

Before starting the exploratory experiment of collecting peoples’ anecdotal beliefs through 
surveys, we needed an initial set of such anecdotes to both encourage thinking and also use as 
examples of what we are interested in.  

To gather the folklore in HPC, a member of the study group, who is an HPC professor, 
conducted an informal scan of several sources including lecture notes used in introductory HPC 
classes at the University of Maryland as well as scanning the Internet for related keywords 
(including "HPC tribal lore” and "HPC folklore").  The goal of this process was not to be 
exhaustive, but instead to gather a sense of the type of information that a beginning HPC 
programmer might find. This initial list of 10 ideas (the left column of the table in Appendix 1) 
was recorded and used as the basis for our first survey.   

We then asked 7 HPC specialists and professors who regularly teach HPC classes to comment 
on the initial list.  They were asked to give an “agree”, “disagree” or “don’t know” answer to 
each candidate, give their comments or change suggestions and add any folklore that they are 
aware of but is not on the list.  

The folklore number 11 in Appendix 1 was added by one of the participants at this stage. 
Generally the comments revolved around clarifying the domain to which the bit of lore applied. 
For example was the bit of lore talking about a user programming model such as OpenMP or 
hardware architecture such as a multi-threaded machine. 

In order to clarify the questionable points we scheduled a discussion session among the 
participants. This discussion resulted in some modifications in the way folklore sentences were 
phrased. The right column of the table in Appendix 1 is the result of this modification. 
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Figure 3:Folklore and defect solicitation process 
 

At some point during the discussion, the participants agreed that “MPI programs don't run 
well when you use lots of small messages because you get latency-limited”. In order to include 
this in the folklore list, the lore number 12 was added to the list.   

At the next step of the study, a survey form was compiled from the current list of 12 folklore 
and distributed to the participants at the “High Productivity Computing Systems, Productivity 
Team Meeting” held in January 2005. In order to avoid any bias, some of the randomly selected 
lore were rephrased to imply the logically inverse sentence. Two sets of survey forms were 
compiled and distributed randomly.  

2.2 Defect studies 
 

As part of our effort to understand development issues, our classroom experiments have 
moved beyond effort analysis and looked at the impact of defects (e.g. incorrect or excessive 
synchronization, incorrect data decomposition) on the development process. By understanding 
how, when, and the kind of defects that appear in HPC codes, tools and techniques can be 
developed to mitigate these risks to improve the overall workflow. As we have shown [14], 
automatically determining workflow is not precise, so we worked on a mixture of process 
activity (e.g., coding, compiling, executing) with source code analysis techniques. The process of 
defect analysis we built consisted of the following main activities: 
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• Analysis:  
1. Analyze successive versions of the developing code looking for patterns of changes 

represented by successive code versions (e.g., defect discovery, defect repair, addition of new 
functionality). 

2. Record the identified changes. 
3. Develop a classification scheme and hypotheses. 

For example, a small increase in source code, following a failed execution, following a large 
code insertion could represent the pattern of the programming adding new functionality followed 
by a test and then defect correction. Syntactic tools that find specific defects can be used to aid 
the human-based heuristic search for defects. 
• Verification:  
We then need to analyze these results at various levels.  Verification consists of the following 
steps, among others: 
1. If we can somehow obtain the “true” defect sets, we can directly compare our analysis results 

with them to evaluate the analysis results quantitatively. 
2. Multiple analysts can independently analyze the source code and record identified defects. 
3. Examine individual instances of defects to check if each defect is correctly captured and 

documented. 
4. Provide defect instances and classify them into one of the given defect types. This can be 

used to check the consistency of the classification scheme. 
[25] explores this defect methodology in greater detail. 
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3 EXPERIMENTAL RESULTS 
 

An early result needed to validate our process was to verify that students could indeed 
produce good HPC codes and that we could measure their increased performance. Table 2 is one 
set of data that shows that students achieved speedups of approximately 3 to 7 on an 8-processor 
HPC machine. (CxAy means class number x, assignment number y. This coding was used to 
preserve anonymity of the student population.) 

 
Table 2: Mean, standard deviation, and number of subjects for computing speedup on 

game of life 
Data 
set 

Programming 
Model 

Speedup on 8 processors 

Speedup measured relative to serial version: 
C1A1 MPI mean 4.74, sd 1.97, n=2 
C3A3 MPI mean 2.8, sd 1.9, n=3 
C3A3 OpenMP mean 6.7, sd 9.1, n=2 
Speedup measured relative to parallel version run on 1 
processor: 
C0A1 MPI mean 5.0, sd 2.1, n=13 
C1A1 MPI mean 4.8, sd 2.0, n=3 
C3A3 MPI mean 5.6, sd 2.5, n=5 
C3A3 OpenMP mean 5.7, sd 3.0, n=4 

 
Measuring productivity in the HPC domain is part of understanding HPC workflows; 

however, what does productivity mean in this domain [19]? The following is one model that we 
can derive from the fact that the critical component of HPC programs is the speedup achieved by 
using a multiprocessor HPC machine over a single processor [26]: 
 

 
Rho (ρ) represents the relative speedup achieved, while epsilon (ε) represents the effort to 
produce a serial version of the program. Productivity is defined as the relative speedup of a 
program using an HPC machine compared to a single processor divided by the relative effort to 
produce the HPC version of the program divided by the effort to produce a single processor 
version of the program. 
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Table 3 shows the results for one group of students programming the Game of life (a simple 
nearest neighbor cellular automaton problem where the next generation of “life” depends upon 

surrounding cells in a grid and a popular first parallel program for HPC classes) [20]. The data 
shows that our definition of productivity had a negative correlation compared to both total effort 
and HPC execution time, and a positive correlation compared to relative speedup. While the 
sample size is too small for a test of significance, the relationships all indicate that productivity 
does behave as we would want a productivity measure to behave for HPC programs, i.e., good 
productivity means lower total effort, lower HPC execution time and higher speed up. 

  
Table 3: Productivity experiment: Game of Life 

 
 
 
 
 
 
 
 
 
 
 
 

 
 shows the distribution of programming assignments across different programming models 

for the first 7 classes (using the same CxAy coding used in Table 2). Multiple instances of the 
same programming assignment lend the results to meta-analysis to be able to consider larger 
populations of students.  

Program  1 2* 3 4 5 
Serial effort (hrs) 3 7 5 15 + 
Total effort (hrs) 16 29 10 34.5 22 
Serial Exec (sec) 123.2 75.2 101.5 80.1 31.1 
Parallel Exec (sec) 47.7 15.8 12.8 11.2 8.5 
Speedup 1.58 4.76 5.87 6.71 8.90 
Relative  Effort 2.29 4.14 1.43 4.93 3.14 
Productivity 0.69 1.15 4.11 1.36 2.83 

*- Reference serial implementation 
+ - Data not collected 
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 summarizes the number of times each technology has been applied to each programming 
problem. More details are given in [14] and [21]. 

 

 

 
Table 

4: 
Some 
of the 
early 
classr
oom 

experi
ments 

on 
specifi

c 
archit
ecture

s 
Table 

4: 
Multi

ple 
classr

 Seria
l 

MPI OpenM
P 

Co-
Array 
Fortran 

StarP XMT

Nearest-Neighbor Type Problems 
Game of Life C3A3 C3A3

C0A1
C1A1 

C3A3    

Grid of Resistors C2A2 C2A2 C2A2  C2A2  
Sharks & Fishes  C6A2 C6A2 C6A2   
Laplace’s Eq.  C2A3   C2A3  
SWIM   C0A2    

Broadcast Type Problems 
LU Decomposition   C4A1    
Parallel Mat-vec     C3A4  
Quantum Dynamics  C7A1     

Embarrassingly Parallel Type Problems 
Buffon-Laplace Needle  C2A1

C3A1 
C2A1 
C3A1 

 C2A1 
C3A1 

 

Other 
Parallel Sorting  C3A2 C3A2  C3A2  
Array Compaction      C5A1
Randomized Selection      C5A2
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oom studies for each technology 
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For example, we can use this data to partially answer an earlier stated hypothesis (Hyp. 4: An 
MPI implementation will require more code than an OpenMP implementation). Table 5 shows 
the relevant data giving credibility to this hypothesis (but this data is not statistically significant 
yet) 
 

Table 5: MPI program size compared to OpenMP program size 
 

 
 
 
 
 
 
 
 
 
 

1. An alternative parallel programming model is the Parallel Random Access Machine (PRAM) 
model [22], which supports fine-grained parallelism and has a substantial history of 
algorithmic theory. Explicit Multi-threading C (XMT-C) [23] is an extension of the C 
language that supports parallel directives to provide a PRAM-like model to the programmer. 
A prototype compiler exists that generates code which runs on a simulator for an XMT 
architecture. We conducted a feasibility study in a class to compare the effort required to 
solve a particular problem. After comparing XMT-C development to MPI, on average, 
students required less effort to solve the problem using XMT-C compared to MPI. The 
reduction in mean effort was approximately 50%, which was statistically significant at the 
level of p<.05 using a t-test [24].  

2. While OpenMP generally required less effort to complete (Figure 4), the comparison of 
defects between MPI and OpenMP, however, did not yield statistically significant results, 
which contradicted a common belief that shared memory programs are harder to debug. 
However, our defect data collection was based upon programmer-supplied effort forms, 
which we know are not very accurate. This led to the defect analysis mentioned previously 
[25], where we intend to do a more thorough analysis of defects made.  

 
 

Dataset Programming 
Model Application Lines of Code 

C3A3 
 

Serial 
Game of Life 

 

mean 175, sd 88, n=10 
MPI mean 433, sd 486, n=13 
OpenMP mean 292, sd 383, n=14 

C2A2 
 

Serial 
Resistors 

 

42 (given) 
MPI mean 174, sd 75, n=9 
OpenMP mean 49, sd 3.2, n=10 
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Figure 4: Time saved using OpenMP over MPI for 10 programs. (MPI used less time in 
only case 1 above) 

 
3. We collected low-level behavioral data from developers in order to understand the 

"workflows" that exist during HPC software development.  A useful representation of HPC 
workflow could both help characterize the bottlenecks that occur during development and 
support a comparative analysis of the impact of different tools and technologies upon 
workflow.  One hypothesis we are studying is that the workflow can be divided into one of 
five states: serial coding, parallel coding, testing, debugging, and optimization.  

In a pilot study at the University of Hawaii in Spring of 2006, students worked on the 
Gauss-Seidel iteration problem using C and POSIX threads (or PThreads) [17] in a 
development environment that included automated collection of editing, testing, and 
command line data using Hackystat.  We were able to automatically infer the "serial coding" 
workflow state as the editing of a file not containing any parallel constructs (such as MPI, 
OpenMP, or PThread calls), and the "parallel coding" workflow state as the editing of a file 
containing these constructs. We were also able to automatically infer the "testing" state as the 
occurrence of unit test invocation using the CUTest tool.  In our pilot study, we were not able 
to automatically infer the debugging or optimization workflow states, as students were not 
provided with tools to support either of these activities that we could instrument.  
     Our analysis of these results leads us to conclude that workflow inference may be possible 
in an HPC context. We hypothesize that it may actually be easier to infer these kinds of 
workflow states in a professional setting, since more sophisticated tool support is often 
available which can help support inferencing regarding the intent of a development activity.  
Our analyses also cause us to question whether the five states that we initially selected are 
appropriate for all HPC development contexts.  It may be that there is no "one size fits all" 
set of workflow states, and that we will need to define a custom set of states for different 
HPC organizations in order to achieve our goals. 

       Additional early classroom results are given in [8]. 
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4 TOOL DEVELOPMENT 
 
In order to conduct this research, a series of tools were developed (Figure 5): 
1. Websites 

1. HPCBugBase.org – Defect database 
2. http://hpcs.cs.umd.edu – HPCS Development time website 

2 Data collection 
3. UMDINST – Shell-level time stamps from compilation and execution 
4. Experiment Manager - Collect self-reported effort data 
5. Shell Logger – Capture all shell commands 
6. Hackystat – Low level time stamps for many tools 

3 Data conversion 
7. Raw data importer – Import UMDINST data to database 
8. DB Sanitizer – Remove privacy data from DB 

4 Visualization and analysis 
9. Automatic Performance Measurement System – Automatically run scripts of programs. 
10. UCSB execution harness – Execute programs under controlled conditions 
11. CodeVizard – View source code evolution 
12. Data Analyzer – Visualization of UMDINST and Experiment Manager data 
13. Activity graph – View workflow information 

 
 
 
The websites (1.1, 1.2) allow for others to track our research and collect defects via a wiki. The 
HPCBugBase is described in more details in Section 4.2 below. 
      

 
Figure 5: Tool structure 

http://hpcs.cs.umd.edu
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The data collection tools (2.3 to 2.6) are focused around the UMD experiment manager, 
explained in section 4.1 that follows. Hackystat is a product of Philip Johnson of the University 
of Hawaii, but we have worked with Philip in addressing issues his tool originally didn’t process. 
The data conversion tools (3.7, 3.8) are internal conversion tools within the experiment manager 
used to handle data from a variety of sources and to handle privacy issues required by federal 
and state laws. The visualization tools (4.9 through 4.13) are still under development, and the 
lack of continued funding prevents their completion. A prototype of the data analyzer (tool 4.12) 
is  part of the Experiment Manager explained below. 

4.1 Experiment Manager 
 

As stated earlier, we collected effort data from student developments and also collected data 
from professional HPC programmers in 3 ways: manually from the participants, automatically 
from timestamps at each system command, and automatically via the Hackystat tool, sampling 
the active task at regular intervals. All 3 methods provided different values for “effort,” and we 
developed models to integrate and filter each method to provide an accurate picture of effort. 

Our collection methods evolved one at a time. To simplify the process of students (and other 
HPC professionals) providing needed information, we developed an experiment management 
package (Experiment Manager) to more easily collect and analyze this data during the 
development process. It includes effort, defect and workflow data, as well as copies of every 
source program during development. Tracking effort and defects should provide a good data set 
for building models of productivity and reliability of HPC codes. 

We evolved the Experiment Manager framework (Figure 5) to mitigate the complexities 
described in the previous section. The framework is an integrated set of tools to support software 
engineering experiments in HPC classroom environments. While aspects of the framework have 
been studied by others, the integration of all features allows for a uniform environment that has 
been used in over 25 classroom studies over the past 4 years.  The framework supports the 
following. 

1. Minimal disruption of the typical programming process. Study participants solve 
programming tasks under investigation using their typical work habits, spreading out 
programming tasks over several days. The only additional activity required is filling out some 
online forms. Since we do not require them to complete the task in an alien environment or work 
for a fixed, uninterrupted length of time, we minimize any negative impact on pedagogy or 
subject overhead.  

2. Consistent instruments and artifacts. Use of the framework ensures that the same types of 
data will be collected and the same types of problems will be solved, which increases confidence 
in meta-analysis across studies at different universities. 

3. Centralized data repository with web interface. The framework provides a simple, 
consistent interface to the experimental data for experimentalists, subjects, and collaborating 
professors. This reduces overhead for all stakeholders and ensures that data is consistently 
collected across studies. 

4. Sanitization of sensitive data. The framework provides external researcher with access to 
the data sets that have been stripped of any information that could identify subjects, to preserve 
anonymity and comply with the protocols of human subject research as set out by Institutional 
Review Boards (IRBs) at American universities.  



 

19 

The Experiment Manager has 3 components: 
1. UMD server: This web server is the entry portal to the Experiment Manager for students, 

faculty and analysts and contains the repository of collected data. 
2. Local server: A local server is established on the user machine (e.g., the one used by students 

at a university) that is used to capture experimental data before transmission to the University 
of Maryland. 

3. UMD analysis server: A server stores sanitized data available to the HPCS community for 
access to our collected data. This server avoids many of the legal hurdles implicit with using 
human subject data (e.g., keeping student identities private). 
For the near future, our efforts will focus on the following tasks: 
• Evolve the interface to the Experiment Manager web-based tool to simplify use by the 

various stakeholders (i.e., roles). 
• Continue to develop our tool base, such as the defect data base and workflow models. 
• Build our analysis data base including details of the various hypotheses we have studied 

in the past. 
• Evolve our experience bases to generate performance measures for each program 

submitted in order to have a consistent performance and speedup measure for use in our 
workflow and time to solution studies. 

Further details of the Experiment Manager are covered in [18]. 

4.2 HPCBugBase 
 

A database and corresponding web-based tool has been created to collect and manage defects 
found in HPC programs. The tool is at http://www.HPCBugBase.org. It is a public wiki allowing 
for the creation of a defect-based experience base. Figure 6 is the home page of this bug base. 
Table 6 presents the initial defect classification taxonomy being developed. More information 
about the HPC Bug Base is found is [25] and [27]. 
 
 

http://www.HPCBugBase.org
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Figure 6: HPCBugBase home page 

 
 

Table 6: HPC defect classification 
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4.3  Summary 
 
     During the first three of the four years of this project, we developed a methodology for 
running HPC experiments in a classroom setting to obtain results we believe are applicable to 
HPC programming in general. We started to look at larger developments and look at large 
university and government HPC projects in order to increase the confidence on the early results 
we obtained with students. 
     Our development of the Experiment Manager system and HPC bug base allowed us to more 
easily expand our capabilities in this area. The Experiment Manager permits others to run such 
experiments on their own in a way that allows for the appropriate controls of the experiment so 
that results across classes and organization at geographically diverse locations can be compared 
in order to get a thorough understanding of the HPC development model. 
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5 THE ASC-ALLIANCE CASE STUDY 
 

Computational scientists face many challenges when developing software that runs on large-
scale parallel machines. However, their software development processes have not previously 
been studied in much detail by software engineering researchers. To better understand the nature 
of software development in this context, we examined five large-scale computational science 
software projects, known as the Accelerated Scientific Computing (ASC)-Alliance centers 
(Section 5.1). We conducted interviews with project leads from all five of the centers to gain 
insight into the nature of the development processes of large-scale parallel code projects, and to 
identify issues in the current state-of-the-practice that reduce programmer productivity.  

“Computational science” refers to the application of computers to advance scientific research 
through the simulation of physical phenomena where experimentation would be either 
prohibitively expensive or simply not possible. Advancement of scientific research depends upon 
the ability of these scientists to develop software productively, and is therefore of interest to 
software engineering researchers. However, there are many differences in software development 
process in this domain compared to other domains such as IT. One major difference is that 
scientific software can be very computationally demanding and may require the use of the most 
powerful machines available today, which are sometimes referred to as high-end computing 
(HEC) systems or supercomputers. These systems present some unique challenges to software 
development.  

To learn more about the process of developing software to run on HPC systems, we studied 
five different software projects that develop such codes2. These projects make up a group of 
research centers known as the ASC-Alliance centers. Each center owns a large software project 
which is focused on addressing a different problem in computational science. These centers are 
provided with access to large-scale HPC systems located at various supercomputing centers.  

To study these projects, we conducted interviews with high-level members of each project. 
These project members were all involved in project management, software architecture, or 
software integration.  Our goals were to characterize product, project organization, and process, 
both in terms of using the software and developing the software, and to identify particular 
challenges faced by the developers. Note that we use the terms “developer”, “scientist”, and 
“programmer” interchangeably. 

5.1 Background 
 

The five ASC-Alliance centers were formed around 1997 by the National Nuclear Security 
Agency (NNSA, an agency within the Department of Energy) to develop computational 
simulation as a credible method of scientific research. The major project at each center is focused 
on solving one particular scientific problem by developing multi-physics, coupled applications. 
This refers to the simulation of different aspects of physical phenomena (e.g. solid mechanics, 
fluid mechanics, combustion), which are then “coupled” together to form a single simulation. 
The five centers are: 
• Center for Simulating the Dynamic Response of Materials, California Institute of Technology 

o Goal: simulate the response of materials to strong shocks 

                                                 
2 In the HEC community, scientific computer programs are referred to as “codes”  



 

23 

• Center for Integrated Turbulence Simulations, Stanford University 
o Goal: simulate full-scale jet engines 

• Center for Astrophysical Thermonuclear Flashes, University of Chicago 
o Goal: simulate thermonuclear burn of compact stars 

• Center for the Simulation of Advanced Rockets 
o Goal: simulate solid propellant rockets 

• Center for Simulation of Accidental Fires & Explosions, University of Utah 
o Goal: simulate fires in contained vessels. 

5.2 Goals and methodology 
 

Our goals for conducting this study were to characterize which scientific programming 
activities are time-consuming and problematic, common problems that scientific programmers 
face, and the impact of software technologies on developer effort.  

We conducted this study within the context of the DARPA High Productivity Computing 
Systems (HPCS) program. In our earlier work, we ran controlled experiments to evaluate the 
effect of parallel programming language on programmer effort and program performance, using 
students from graduate-level parallel computing courses [8].  However, without empirical data 
on how scientific codes are actually developed, we had no larger context for interpreting our 
results. In particular, we did not know whether a new parallel programming language would 
address the major problems that the developers faced, or whether they would adopt a new 
language if given the opportunity. 

To conduct this study, we began by distributing a pre-interview questionnaire to each center 
that asked for some basic information about the project. Next, we conducted a telephone 
interview with one or two of the technical leads on the project. From this interview, we generated 
a summary document, which was sent back to the technical leads for review and corrections.   

5.3 Software characteristics 
 

While our main object of study was the software development process of the scientists, we 
first wanted to characterize the product that they were working on, so we had some context for 
the software environment that the developers were working in. We asked about attributes of the 
software (information about the size of the codes, degree of code reuse via libraries, 
organizational structure of the code), and the intended machine target (what kinds of machines 
the codes are intended to run on).  

5.4 Attributes 
 

The size of the codes range from 100-500 Kilosource lines of code (KLOC). Most of the 
codes are written as a mixture of C/C++ and Fortran, with one code being a pure Fortran 
implementation. One code uses a Python scripting layer that provides an interface for running the 
application. With one exception, core elements of these projects evolved from pre-existing 
codes.  
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All codes make use of the MPI library to achieve parallelism. In addition, each code makes 
use of external libraries, for features such as I/O, mesh operations – including adaptive mesh 
refinement, computational geometry, linear algebra, and tools for solving sparse linear systems 
and systems modeled by partial differential equations. 

While these codes use parallel libraries which sit atop MPI, developers were still required 
write raw MPI code to achieve desired functionality.  Therefore, they must deal with the 
additional complexities that are well-known in writing message-passing applications. Some of 
the codes use a layered approach which hides the details of message-passing, so that a 
programmer can add additional functionality without writing MPI code. However, these 
abstraction layers had to be written from scratch.  

Each code is organized into independent subsystems, and the subsystems are maintained by 
separate individuals or small groups. All codes use a component-based architecture to minimize 
coupling between individual subsystems. In several of the projects, these independent 
subsystems are almost like separate projects: they can run as standalone applications and may 
incorporate new features that are independent of the larger, coupled application. Since almost all 
of the codes involve multiple programming languages, they must deal with language 
interoperability issues. (The one exception, a pure Fortran application, once used a Python 
framework to drive the application but abandoned it because of the difficulty in porting a hybrid 
Python/Fortran application to multiple platforms). One project built their component framework 
around the Common Component Architecture (CCA), which is a community effort to simplify 
the task of building such multi-language, coupled codes. In that case, the chief software architect 
was an early adopter of this technology and is actively involved with the larger CCA effort. The 
other projects developed their own communication frameworks.  

5.5 Machine target 
 

The codes are designed to run on “flat” MPI-based machines (i.e. all communication takes 
place through message-passing, even if some processes share physical memory). While all of the 
codes currently run on clusters of symmetric multiprocessors (SMPs), none of them have been 
explicitly optimized to take advantage of the SMP nodes: the developers assume that the vendor 
MPI implementations are efficient enough that optimizing for SMP nodes would not yield large 
performance improvements. Tuning for a specific architecture is considered a poor use of 
resources: the investment required to gain expertise in a particular architecture is too great given 
that new architectures appear every six months. 

Two projects experimented in the past with improving performance on clusters of SMPs by 
using OpenMP to leverage parallelism within nodes and MPI to leverage parallelism across 
nodes. Results were mixed: one project found that a pure MPI implementation was competitive 
with hybrid MPI-OpenMP approach, and the other did observe increased performance when 
incorporating OpenMP but have not had a chance to follow up on this work due to other 
priorities. 
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5.6 Project organization 
 

Like all software projects that involve more than a single individual, the developers on these 
projects must coordinate their efforts. We wanted to understand the organizational structure 
(how the project was organized), the staff (who the developers were) and their configuration 
management process (how the developers coordinated to make changes to the code). We were 
looking for similarities and differences with software projects in other domains, and whether the 
scientists encountered any domain-specific issues from a project management point of view. 

Each project is divided up into groups that focus on different aspects of the problem. This 
division is reflected in the code, where the software is partitioned into independent subsystems 
and each subsystem is owned by one of the groups. Each subsystem has one or two chief 
programmers who understand the subsystem in depth and are responsible for it. These chief 
programmers make the majority of the changes to the code. Each project also has either a chief 
software architect or a group who is responsible for the integration code. 

Development is compartmentalized, and the groups are relatively independent. There are 
integrated code development meetings once a week where the core developers from each of the 
groups meet to discuss issues such as coordinating code changes that will affect more than one 
module.  

5.7 Staff 
 

In total, there are about seventy-five people actively involved on a given project. Ten to 
twenty-five of these people are core developers that routinely contribute code to the project. The 
developers consist of professionals, professional staff members with M.S. and PhD degrees, 
postdocs, and graduate students. Their backgrounds are in physics, chemistry, applied math, 
engineering (mechanical, civil, aerospace, chemical), and computer science. The experience of 
the programmers ranges from five to twenty-five years of sequential programming, and zero to 
fifteen years of parallel programming. The projects also have graduate students who work on the 
code as part of their research, though they are not core developers.  

5.8 Configuration management 
 

The projects use version control systems such as Concurrent Version System (CVS) [28] and 
subversion to coordinate changes to the code, and all have integrated version control into their 
development process. No projects have adopted a formal process for approving code before it is 
checked into the repository. Instead, there is general agreement that test cases should pass before 
commits are made to the repository. Developers are individually responsible for performing any 
unit testing, standalone testing, and integration testing that may be necessary. On one project, all 
developers are automatically notified by email whenever code is checked in to the repository so 
that the developers are aware of recent modifications that might affect them.  

Since all codes are in active use for scientific research and active development, the projects 
must allow the developers to modify the code while ensuring that a stable version is always 
available. Therefore, all projects maintain both stable and development versions of the code.  
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Only one project has a formal bug-tracking system that is in active use. On the other projects, 
defect tracking is accomplished through informal communication among project members and 
through the use of wikis. Some projects have attempted in the past to introduce defect tracking 
systems, but these systems were not adopted by the developers.  

5.9 Software usage 
 

Our study focused mainly on issues related to the development of the software. However, we 
also wanted to get a sense of how the software was used, and who was using it. Since problems 
with requirements are a major issue in other domains of software engineering, and requirements 
are often driven by user needs, we wanted to understand the role of the user in the software 
development process in this domain. In addition, we wanted to understand what the execution 
times were like. We did not know just how long these types of programs took to run, and we 
believed going into the study that large execution times were a major obstacle to programmer 
productivity. We wanted to understand the entire process of how the software was used, from 
setting up the input to examining the output. 

5.10 Users 
 

The main users of the codes are research scientists who are the active developers. Some of 
the users are students who are using the software for their own scientific research, and are not 
active in the code development, but these efforts are not the primary concern of the Centers. 
Some codes have found a user base outside of the project. These external users may even modify 
the program to suit their own needs. 
 

5.11 Execution times 
 

Characterizing the execution times of the codes is difficult because execution times vary 
enormously depending upon the size of the problem. Typical runs are on the order of ten to one 
hundred hours of execution time.  

5.12 Setting up the input 
 

Most projects use configuration files for specifying program parameters, with two 
exceptions: one project uses an interactive Python-based scripting interface, and another provides 
a programmatic Fortran interface for specifying the initial conditions of the simulation. Some 
projects have expressed interest in developing a graphical interface to simplify the task of setting 
up the input for a run. 

For some projects, generating the inputs is a very time-consuming task. Some of the codes 
simulate systems with intricate geometries (e.g. the space shuttle), which are modeled as 
unstructured meshes. Generating the mesh for an input can take an experienced user from half an 
hour to weeks or months. In one case, a user spent a year generating a mesh for input. 
Determining whether a given mesh is of sufficient quality is an active area of research. 
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It can also take hours to weeks to retrieve the physics data needed to run the software, 
depending on what type of data is needed and how good the existing documentation is. In some 
cases, determining the correct initial conditions for the simulation is also an active area of 
research. 

5.13 Examining the output 
 

Users apply visualization tools for examining the output of the simulations. The projects use 
a mix of visualization tools developed in-house and third-party tools.  

5.14 Development activities 
 

The developers engage in different activities during the course of development. We asked for 
details about the following categories: adding new features to the code base, testing the code to 
verify correctness, tuning the code to improve performance, debugging the code to remove 
defects, and porting the code to new platforms. 

5.15 Adding new features  
 

Each year, the centers plan on running a major set of simulations. These simulations drive an 
implementation plan which determine what new features need to be added to the software. 
Scientists can explore avenues of research, but the overall direction is set by the implementation 
plan. For centers with larger external user bases, sufficiently strong demand from outside users 
can also drive the addition of new features.  

New features added to the codes can be classified into two categories: those that are localized 
within an individual subsystem (low-level change), or those that involve changes across sub-
systems (high-level change). Low-level changes are administered solely by the owners of the 
subsystem being modified and require no communication across groups. High-level changes 
require some degree of coordination.  

Since the projects have been in operation for almost a decade, the code bases are all fairly 
mature and are currently being applied to do real science. Very few new subsystems are planned 
for development, although there continue to be enhancements to existing subsystems. Most 
modules have satisfactory parallel performance, with the exception of very new modules and 
modules where efficient parallelization is still an open research problem (e.g. adaptive mesh 
refinement).  

In some of the projects, the developers do not have to write code explicitly in parallel but 
instead build on top of a parallel infrastructure that abstracts away the parallelization details. 
Other projects require that the developers program directly to the MPI library.  
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5.16 Testing 
 

All projects use a suite of regression tests to catch any errors introduced by programmers 
modifying the code. Some projects have an automated system for running regression tests, and 
others run the regression tests manually. One project requires that new students who check out 
the code are required to run the regression tests as part of their learning process. 

Testing a new algorithm is a challenging task in this environment. It is not sufficient to 
define simple test cases where modules are fed known inputs and checked against expected 
outputs. Rather, algorithms are evaluated in terms of qualities such as stability, accuracy, speed, 
and linear scalability. A module is considered to be functioning correctly if, for the class of 
inputs that are of interest, the quality of the module’s output is sufficient to allow it to be coupled 
with other modules and produce coupled applications. Since the inputs of interests change over 
time as more complex simulations are attempted, an algorithm that is acceptable today may not 
be acceptable tomorrow.  Therefore, the testing process is different from other software domains 
because the focus is on identifying algorithmic defects (i.e. evaluating the quality of the 
algorithm) rather than on coding defects (i.e. errors in implementing the algorithm in the source 
code). Finding and fixing algorithmic defects is much more challenging than finding and fixing 
coding defects.  

Testing the quality of algorithms involves qualitative analysis about how the algorithm 
behaves. There are different strategies for testing an algorithm, depending upon the nature of the 
problem (e.g. checking if certain quantities are exactly or approximately conserved, checking if 
symmetry properties hold, checking against known analytical solutions). Some of the projects 
work with numerical analysts who can provide mathematical guarantees about certain aspects of 
the code such as stability, or that certain positive quantities such as energy cannot diverge.  

In general, the developers do not know whether an algorithm solves an equation correctly 
until certain requirements are passed. For example, a module may appear to be performing 
correctly in isolation, but when used in a coupled application it may behave in unexpected ways. 
This testing process is very interactive and requires a substantial amount of effort and expertise. 
Since many of the developers are postdocs and graduate students without extensive experience, 
the testing process involves a lot of guidance from senior people who understand the broader 
scope of the physics and software.  

5.17 Tuning 
 

Tuning activity occurs when the developers discover that the software is executing much 
slower than expected. Tuning may be required when the software is being ported to a new 
platform (see also the porting section below), or if there major changes to the software 
architecture have caused performance penalties, or simply because of changes made to a 
particular subsystem create a bottleneck. At least one project uses tuning specialists: developers 
who are skilled at identifying and fixing performance bottlenecks. One particular tuner comes 
from a local computer science group that develops performance analysis tools. 
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Since one of the project goals is to develop algorithms that will last across many machine 
lifetimes, it is not seen as productive to try to maximize the performance on any one particular 
platform. Instead, code changes are made that will improve performance on a wide range of 
platforms. In addition, on at least one project the codes are constantly in a state of flux, as new 
algorithms are continually being evaluated, which involves changing the core components of the 
code. If there were many machine-specific optimizations in the code, it would be much more 
difficult to understand the code, which would increase maintenance effort.  

For a given application, there is often a considerable amount of tuning that needs to be done 
in order to achieve reasonable performance on a new platform. This tuning process is mostly 
about determining data set size, number of processors, and which processors should be assigned 
which tasks. While the individual projects do not focus on maximizing performance on any one 
system, they are occasionally able to take advantage of a team of third-party experts who can 
achieve a large speedup on a particular system. 

Developers do use externally developed profiling tools. However, on some of the codes, 
external profiling tools have failed because they could not deal with an application written in 
multiple languages. In addition, some of the codes contain their own profiling routines. Some 
developers find these tools useful, but others say that they are familiar enough with the code that 
these profiling tools do not reveal any information that is not already known. 

There are ongoing efforts to improve performance through the development of new 
algorithms (e.g. new adaptive mesh refinement algorithms). However, the developers view these 
efforts as new functionality rather than tuning.   

5.18 Debugging 
 

All projects mentioned make some use of TotalView [29], which is a popular parallel 
debugger. Sequential debugging tools (e.g., Purify [30]) are also used, although they are only 
useful if the failure can be reproduced when running the program on a single processor. The use 
of trace statements to debug is common across all projects, although these are difficult to 
interpret when the program is running on a large number of processors. The developers also 
examine the simulation outputs with visualization tools to help identify defects. 

Developers described several usage patterns for applying the tools to localize defects. One 
common pattern is to use a debugger to produce a stack trace, which is then used to determine 
where to insert print statements into the code. Another common debugging pattern is to try to 
reproduce a defect when running the program on a smaller simulation, as tools such as 
TotalView and the GNU Project Debugger (gdb) [31] can used very effectively on a moderate 
number of CPUs. 

There are some types of defects for which the existing tools do not provide any additional 
assistance. Most of the debugging time is spent in algorithmic debugging (i.e. dealing with 
algorithmic defects, see the section on testing, above), a process for which typical debugging 
tools are not appropriate.  



 

30 

Large machines are generally batch-scheduled, which makes debugging more difficult. Since 
the debugging process typically involves frequent re-running of the code, running under a batch 
queue can become a week-long process where it would be a matter of hours on a dedicated 
machine where jobs could be run interactively. While not available during the week  the National 
Labs make available dedicated weekends to the ASC-Alliance centers where a fraction or the 
entire platform of a particular machine is available for interactive use for a weekend. There are a 
few of these weekends each year, and about 60 hours of total compute time are provided to the 
center, which provides sufficient time to run very large jobs and do large-scale debugging. 
Debugging runs that involve smaller number of processors are done internally.  

5.19 Porting 
 

Porting activity most commonly occurs when the DOE purchases a new machine that 
becomes available for project use. Additionally, porting work may be necessary due to a 
software upgrade on a system that is already in use. The time required to port to a new system 
ranges from a single day to several weeks depending on the individual code and the maturity of 
the development tools on the new platform.  

Porting requires a non-trivial amount of effort because, when a new platform is released, the 
code cannot simply be recompiled and run. Much of the porting effort is spent on a large number 
of small details that need to be addressed. For example, the build scripts (e.g. makefiles) need to 
be modified to accommodate the differences in development tools on the new system. Immature 
compilers on new systems are another source of porting effort; one project spent a year getting 
the code to run on one particular machine because of C++ issues; while some problems had 
workarounds, others required that they wait for the vendor to fix the compiler. One project 
completely abandoned the use of Python to reduce porting effort.  

Although porting is only a small percentage of the total effort, it can involve a great deal of 
work in a very focused time (e.g. several people working for a month). Porting is perceived as a 
task that involves an unwarranted amount of effort. Some projects have broken compilers and 
MPI codes on every platform.  Two projects did not port their code to Sandia Lab’s ASCI Red3 
because the Fortran compiler did not support needed features properly, and it was not worth the 
effort to try and work around these problems to get the code to run on the machine. 

5.20 Effort distribution and bottlenecks 
 

Developers report spending most of their development time (75-95%) on adding new features 
and testing the system. Tuning and porting take up relatively little of the total development time 
(1-10%). However, the distribution of effort varies depending on the development phase of the 
project. Earlier on in the projects, when new data structures had to be designed to handle a 
particular class of physics problems, effort distribution was different than currently where the 
effort on data structures is oriented towards modifying them for new areas. The projects 
occasionally undergo large-scale re-architecting to better incorporate new features, and this also 
changes the effort distribution.  

                                                 
3 http://www.sandia.gov/ASCI/Red/ 

http://www.sandia.gov/ASCI/Red/
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Verification and validation was reported as a common bottleneck. In addition, the debugging 
of parallel algorithms was a bottleneck across all projects. Such debugging is made more 
challenging because of the defects that only manifest themselves in more complex (parallel) 
execution environments where it is more difficult for the programmer to observe what is 
happening. For example, a code that runs perfectly well on 32 processors, may fail on 64 
processors due to interactions caused by the increasing number of parallel interfaces needing to 
be supported. Or, a subsystem may work well when executing independently, but does not 
behave as expected when interacting with another subsystem. 

Other bottlenecks include: 
• Generating input (Computer Aided Design (CAD) modeling, mesh generation) 
• Expressing algorithms in parallel 
• Performing production runs (obtaining time to run on large machines) 
• Understanding old code (when re-architecting) 

5.21 General observations 
 

Based on the interview responses, we made some general observations about software 
engineering in this domain. One surprise to us was the challenging nature of performing 
validation of this type of software. We were also very interested in the role that MPI played in 
these projects, because of the goals of the HPCS project to develop alternative parallel 
programming languages. In particular, we were interested in understanding how likely an 
alternative to MPI, either in the form of a library or framework that encapsulates MPI or in the 
form of another parallel programming language could replace the current dominance of MPI in 
such HPC environments. Finally, we were interested in the scientists’ opinions on what 
productivity means to them, since one of our ultimate goals as software engineering researchers 
is to help improve programmer productivity.  

5.22 Validation 
 

Validation of the codes (checking the simulation accurately simulates the phenomena of 
interest) is a formidable challenge. A validation study is typically a research project or the 
essence of a thesis. A student will choose a problem that has an interesting set of experimental 
data associated and then identifies to what extent it can be simulated. Because of the effort 
involved in running such studies, it is not feasible to validate every new algorithm with an 
experiment.  
 

5.23 MPI 
 

All projects make extensive use of MPI to achieve parallelism. MPI is a standard library that 
is efficiently implemented on all types of platforms: It is the only technology that can run 10,000 
processor jobs, and the only technology available that will allow the program to be run on a 
workstation as well as a world-class machine without having to tweak the code in significant 
ways. In addition, the algorithms employed by the projects all lend themselves to domain 
decomposition. 
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Despite MPI being the most appropriate technology for the job, there was widespread 
dissatisfaction with it: one project member referred to it as “nothing more than high-level 
assembly language”, where the programmer is responsible for all memory management and 
process signaling. The additional work required by MPI was identified as a large barrier to 
productivity for a project starting from scratch. However, one project member mentioned that 
exposing these low-level details to the programmer is an advantage of MPI, because it gives the 
programmers more control over what happens in the code.  

One of the advantages of MPI is that it is possible to write MPI code knowing very few 
functions, so it is very easy to teach. While teaching people to use MPI is not particularly hard, 
teaching people to write MPI effectively is extremely difficult: this fact distinguishes the first 
year graduate student from the developers who have been at a center for four-to-five years. 

5.24 Alternative to MPI: libraries/frameworks 
 

All of the projects used libraries that were built on top of MPI. However, while such libraries 
can abstract away some of the low-level details of message-passing code, none of the projects 
adopted such libraries to the extent that they could entirely avoid writing MPI code. Even the 
libraries that are used can be problematic: on one project, the most troublesome code is the 
parallel HDF54 I/O library that sits atop MPI. Other projects outside of the ASC-Alliance have 
attempted to reuse existing class libraries to completely abstract away the low-level MPI details, 
but this has led to problems. For example, on one such project, some C++ code from a parallel 
framework was not portable across platforms because of differences in compiler 
implementations. Another obstacle to reuse is that these frameworks make assumptions about 
how the work will be done, and violating these assumptions requires that the programmer 
become deeply involved in framework details. The effort to use the framework is roughly the 
same as the effort involved in writing the code using MPI, which eliminates the benefit of use.  
Because of this, each project chose to develop a custom framework. 

5.25 Alternative to MPI: other languages 
 
       There was no alternative to MPI that any of the developers were aware of that could better 
meet their current needs. Some projects had previously looked at High-Performance Fortran and 
hybrid MPI-OpenMP as alternative models, but none felt compelled to switch.  
       Developers mentioned the following desirable features in an alternative parallel 
programming language 
• Hides memory operations from the programmer 
• Provides the programmer with a single memory space 
• Supports remote puts and gets 
• Is easy to use 
• Is efficiently implemented on all types of platforms 
• Can do everything MPI can do plus provide additional useful capabilities 

                                                 
4 http://www.hdfgroup.org/HDF5/ 

http://www.hdfgroup.org/HDF5/


 

33 

Even if a new language met the above criteria, this would not guarantee adoption by the 
projects. The existing codes are already highly scalable and portable, and have taken years to 
develop and verify. All of the developers would have to be convinced that the new language 
would make their programs much better.  

Both technical and sociological issues create obstacles for the adoption of a new language. 
Technical issues include expressiveness, performance, support for large projects, and portability. 
A new language would need to be expressive enough to support all of the needed algorithmic 
features (e.g. grid-based data structures, particle-based data structures). A parallel version of C or 
Fortran would not be considered expressive enough, as the code would probably be no cleaner 
than it is currently. The performance would have to be competitive with C. C++ is an appealing 
language because C++ code can be made to look like C to achieve better performance. To 
support large projects, the language must support separation of concerns so that developers can 
work on isolated pieces (some languages assume the programmer has a global view of the 
system). Finally, it must be portable. The developers would have to be convinced that it could be 
ported to anything else in the future. If the developers had to re-design the parallelism when a 
new platform comes out, then it won’t even be considered. Even C++ is considered a somewhat 
risky technology because of the varying levels of support for C++ features across vendor 
compilers. 

The main sociological issue is that of market share. The developers would have to be 
confident that the new language would last well into the future. Unfortunately, this creates a 
chicken-and-egg problem for new languages. Some of the current codes are so complex that it 
would be very strenuous to migrate to something else. Even if an ideal solution were found, it 
would not be adopted immediately. The developers would have to experiment with the 
technology first. They would also like to see a number of large workhorse applications converted 
and benchmarked. Being able to use the existing code base in some fashion would make the 
transition easier, although they would still consider a new language that did not allow this, if it 
satisfied their other requirements. 

5.26 Measures of productivity 
 

The developers suggested several measures of productivity that would be useful in their 
context. One was scientifically useful results over calendar time, where scientifically useful 
results implies sufficient simulated time and resolution, plus sufficient accuracy of the physical 
models and algorithms. Another was problem size over calendar time, where the goal is to run a 
larger simulation in a smaller calendar time. One developer gave the example of running a 
particular simulation in a calendar week instead of a calendar quarter. This is partially related to 
the speed of the code, and partially to the availability of the machine. 

Other suggested measures had to do with time to implementation: minimize the time between 
conception of an algorithm and the actual implementation on a parallel architecture, or the time 
to make modifications to the code (minor or substantial). For users to be productive, the holy 
grail is to very quickly go from equations to mapping the equations to a parallel model, and then 
getting an implementation and running it on a machine. Even a petascale machine would be too 
slow for some of the problems that have been addressed (e.g., cryptography constants revolves 
around the creation of longer cryptographic keys and faster computers to break those codes). 
Most of their time is spent trying to map the solution to what is achievable given today’s 
computing resources, so that the problem is solvable in a reasonable period of time.  
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Therefore, they are focused on the development of more efficient algorithms. They are more 
concerned with how long it will take to develop a solution than how long a particular run takes. 
The projects have a much longer-term view on performance issues than HEC vendors. 

For the professor whose job it is to turn out students, one suggested metric was the length of 
time from when a grad student finishes the second year of coursework to when she is a 
productive researcher in the group. This involves acquiring skills as a developer, as a designer of 
parallel algorithms, understanding the physics and how parallelism applies to it. At the 
university, there are considerably more educational aspects to the notion of productivity than in a 
government or industrial lab. (Additional comments on education are addressed later in Section 
6.2.) 

Each project had to build up a software infrastructure, largely from the ground up. This 
required a substantial amount of effort, and it would be more productive not to have to build such 
infrastructure. One developer related how, after a computational scientist would design and 
program an algorithm, the program would be handed off to an applications programmer who 
would then rewrite it so it would run quickly on the system. One developer noted that a good test 
of a productive environment is when, in such an environment, the applications programmer does 
not need feel the need to rewrite the computational scientists’ programs.  

Some productivity issues were only tangentially related to the details of expressing 
parallelism in the code. One developer brought up the importance of doing verification and 
validation to the productivity of the project, especially given the substantial learning curve 
involved in adopting a formal verification and validation process, which was pushed by the 
National Laboratories several years ago. Other productivity issues mentioned were the ability to 
estimate the effort required to implement features and the resultant performance of the code, the 
degree of code reuse by outside users, and the ease of which external users can modify the code 
to suit their own needs. 

5.27 Conclusions to case study 
 

We have attempted to capture different aspects of the software development process for 
large-scale HEC applications, focusing on areas that are particularly challenging.  These projects 
face some unique challenges, both because of the nature of the problem, and because of the 
difficulties associated with programming the environment.  Note that because all the projects that 
we examined are based in academic environments, it is unclear how much would generalize to 
computational science projects in industry or government. 
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6 UNDERSTANDING THE HIGH-PERFORMANCE COMPUTING COMMUNITY 
 
In addition to the ASC case study of the previous section, for the past few years, we’ve had 

the opportunity, as software engineers, to observe the development of computational-science 
software (called codes) built for high-performance-computing (HPC) machines in many different 
contexts. Although we haven’t studied all types of HPC development, we’ve encountered a wide 
cross-section of projects. Despite these projects’ diversity, several common traits exist: 

− Many developers receive their software training from other scientists. Although the 
scientists often have been writing software for many years, they generally lack formal 
software engineering (SE) training, especially in managing multiperson development 
teams and complex software artifacts. 

− Many of the codes aren’t initially designed to be large. They start small and then grow 
on the basis of their scientific success. 

− Many development teams use their own code (or code developed as part of their 
research group). 

     For these reasons (and many others), development practices in this community differ 
considerably from those in more “traditional” SE. 
     We aim here to distill our experience about how software engineers can productively engage 
the HPC community. Several SE practices generally considered good ideas in other development 
environments are quite mismatched to the HPC community’s needs. For SE researchers, the keys 
to successful interactions include a healthy sense of humility and the avoidance of assumptions 
that SE expertise applies equally in all contexts. 

A list of the 500 fastest supercomputers (www.top500.org) shows that, as of November 2007, 
the most powerful system had 212,992 processors. Although a given application wouldn’t 
routinely use all these processors, it would regularly use a high percentage of them for a single 
job. Effectively using tens of thousands of processors on a single project is considered normal in 
this community. 

We were interested in codes requiring nontrivial communication among the individual 
processors throughout the execution. Although HPC systems have many uses, a common 
application is to simulate physical phenomena such as earthquakes, global climate change, or 
nuclear reactions. These codes must be written to explicitly harness HPC systems’ parallelism. 
Although many parallel-programming models exist, the dominant model is MPI (message-
passing interface), a library where the programmer explicitly specifies all communication. 
Fortran remains widely used for developing new HPC software, as do C and C++. Frequently, a 
single system incorporates multiple programming languages. We even saw several projects use 
dynamic languages such as Python to couple different modules written in a mix of Fortran, C, 
and C++. 

The HPCS program’s significance was its shift in emphasis from execution time to time-to-
solution, which incorporates both development and execution time. We began this research by 
running controlled experiments to measure the impact of different parallel-programming models. 
Because the proposed languages weren’t yet usable, we studied available technologies such as 
MPI, OpenMP, Unified Parallel C (UPC), Co-Array Fortran, and Matlab*P, using students in 
parallel-programming courses from eight different universities. 

http://www.top500.org


 

36 

To widen this research’s scope, we collected “folklore”—that is, the community’s tacit, 
unformalized view of what’s true. We collected it first through a focus group of HPC 
researchers, then by surveying HPC practitioners involved in the HPCS program, and then by 
interviewing a sampling of practitioners including academic researchers, technologists 
developing new HPC systems, and project managers. Finally, we conducted case studies of 
projects at both US government labs and academic labs. 

To understand why certain software engineering technologies are a poor fit for computational 
scientists, it’s important to first understand the scientists’ world and the constraints it places on 
them. Overall, we found that there’s no such thing as a single “HPC community.” Our research 
was restricted entirely to computational scientists using HPC systems to run simulations. Despite 
this narrow focus, we saw enormous variation, especially in the kinds of problems that people 
are using HPC systems to solve. Table 7 shows four of the many attributes that vary across the 
HPC community. 

 
Table 7: HPC community attributes 

 

Attribute Values Description 
Team size Individual This scenario, sometimes called the “lone 

researcher” scenario, involves only one 
developer. 

Large This scenario involves “community codes” 
with multiple groups, possibly geographically 
distributed. 

Code life Short A code that’s executed few times (for 
example, one from the intelligence 
community) might trade less development 
time (less time spent on performance and 
portability) for more execution time. 

Long A code that’s executed many times (for 
example, a physics simulation) will likely 
spend more time in development (to increase 
portability and performance) and amortize 
that time over many executions. 

Users Internal Only developers use the code. 
External The code is used by other groups in the 

organization (for example, at US government 
labs) or sold commercially (for example, 
Gaussian, www.gaussian.com) 

Both “Community codes” are used both internally 
and externally. Version control is more 
complex in this case because both a 
development and a release version must be 
maintained. 

http://www.gaussian.com
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One possible measure of productivity is scientifically useful results over calendar time. This 
implies sufficient simulated time and resolution, plus sufficient accuracy of the physical 
models and algorithms. (All quotes are from interviews with scientists unless otherwise 
noted.) 

[Floating-point operations per second] rates are not a useful measure of science 
achieved.—user talk, IBM scientific users group conference 

Initially, we believed that performance was of paramount importance to scientists developing 
on HPC systems. However, after in-depth interviews, we found that scientific researchers focus 
on producing publishable results. Writing codes that perform efficiently on HPC systems is a 
means to an end, not an end in itself. Although this point might sound obvious, we feel that many 
in the HPC community overlook it. 

A scientist’s goal is to produce new scientific knowledge. So, if scientists can execute their 
computational simulations using the time and resources allocated to them on the HPC system, 
they see no need for or benefit from optimizing the performance. They see the need for 
optimization only when they can’t complete the simulation at the desired fidelity with the 
allocated resources. When optimization is necessary, it’s often broad-based, not only including 
traditional computer science notions of code tuning and algorithm modification but also 
rethinking the underlying mathematical approximations and potentially fundamentally changing 
the computation. So, technologies that focus only on code tuning are of somewhat limited utility 
to this community. 

Computational scientists don’t view performance gains in the same way as computer 
scientists. For example, one of us (trained in computer science) improved a code’s performance 
by more than a factor of two. He expected this improvement would save computing time. 
Instead, when he informed the computational scientist, the scientist responded that the saved 
time could be used to add more function—that is, to get a higher-fidelity approximation of the 
problem being solved. 

 
Conclusion: Scientists make decisions based on maximizing scientific output, not program 
performance. 
 
Performance vs. portability and maintainability 

If somebody said, maybe you could get 20 percent [performance improvement] out of it, but 
you have to do quite a bit of a rewrite, and you have to do it in such a way that it becomes 
really ugly and unreadable, then maintainability becomes a real problem. … I don’t think 
we would ever do anything for 20 percent. The number would have to be between 2x and an 
order of magnitude. … Readability is critical in these codes: describe the algorithms in a 
mathematical language as opposed to a computer language. 

Scientists must balance performance and development effort. We saw a preference for 
technologies that let scientists control the performance to the level needed for their science, even 
by sacrificing abstraction and ease of programming. Hence their extensive use of C and Fortran, 
which offer more predictable performance and less abstraction than higher-level programming 
languages. 
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Conversely, the scientists aren’t driven entirely by performance. They won’t sacrifice 
significant maintainability for modest performance improvements. Because the codes must run 
on multiple current and future HPC systems, portability is a major concern. Codes must run 
efficiently on multiple machines. Application scientists aren’t interested in performing machine-
specific performance tuning because they’ll lose the benefits of their efforts when they port the 
code to the next platform. In addition, source code changes that improve performance typically 
make code more difficult to understand, creating a disincentive to make certain kinds of 
performance improvements. 

 
Conclusion: Scientists want the control to increase performance as necessary but won’t sacrifice 
everything to performance. 
 

Verification and validation for scientific codes 

Testing is different. … It’s very much a qualitative judgment about how an algorithm is 
actually performing in a mathematical sense. … Finally, when the thing is working in a 
satisfactory way—say, in a single component—you may then go and run it in a coupled 
application, and you’ll find out there are some features you didn’t understand that came 
about in a coupled application and you need to go back and think about those. 

Simulation software commonly produces an approximation to a set of equations that can’t be 
solved exactly. You can think of this development as a two-step process: translating the problem 
to an algorithm and translating the algorithm to code. You can evaluate these approximations 
(mapping a problem to an algorithm) qualitatively on the basis of possessing desirable properties 
(for example, stability) and ensuring that various conservation laws hold (for example, that 
energy is conserved). The approximation’s required precision depends on the nature of the 
phenomenon you’re simulating. For example, new problems can arise when you integrate 
approximations of a system’s different aspects. Suddenly, an approximation that was perfectly 
adequate for standalone use might not be good enough for the integrated simulation. Identifying 
and evaluating an algorithm’s quality is a challenge. One scientist we spoke with said that 
algorithmic defects are much more significant than coding defects. 

Validating simulation codes is an enormous challenge. In principle, you can validate a code 
by comparing the simulation output with a physical experiment’s results. In practice, because 
simulations are written for domains in which experiments are prohibitively expensive or 
impossible, validation is very difficult. Entire scientific programs, costing hundreds of millions 
of dollars per year for many years, have been built around experimental validation of large 
codes. 
 
Conclusion: Debugging and validation are qualitatively different for HPC than for traditional 
software development. 
 
Skepticism of new technologies 

I hate MPI, I hate C++. [But} if I had to choose again, I would probably choose the same. 

Our codes are much larger and more complex than the “toy” programs normally used in 
[classroom settings]. We would like to see a number of large workhorse applications 
converted and benchmarked. 
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The scientists have a cynical view of new technologies because the history of HPC is littered 
with new technologies that promised increased scientific productivity but are no longer available. 
Some of this skepticism is also due to the long life of HPC codes; frequently, a code will have a 
30-year life cycle. Because of this long life, scientists will embrace a new technology only if they 
believe it will survive in the long term. This explains MPI’s widespread popularity, despite 
constant grumbling about its difficulty. 

Scientific programmers often develop code such that they can plug in different technologies 
to evaluate them. For example, when MPI was new in the 1990s, many groups were cautious 
about its long-term prospects and added it to their code alongside existing message-passing 
libraries. As MPI became widely used and trusted, these older libraries were retired. Similar 
patterns have been observed with solver libraries, I/O libraries, and tracing tools. 

The languages being developed in the DARPA HPCS program were intended to extend the 
frontiers of what’s possible in today’s machines. So, we sought practitioners working on very 
large codes running on very large machines. Because of the time they’ve already invested in their 
codes and their need for long-lived codes, they all expressed great trepidation at the prospect of 
rewriting a code in [porting normally refers to a new platform, rewriting to changing languages] 
a new language. 

 
Conclusion: A new technology that can coexist with older ones has a greater chance of success 
than one requiring complete buy-in at the beginning. 
 
Shared, centralized computing resources 

The problem with debugging, of course, is that you want to rerun and rerun. The whole 
concept of a batch queue would make that a week-long process. Whereas, on a dedicated 
weekend, in a matter of hours you can pound out 10 or 20 different runs of enormous size 
and understand where the logic is going wrong. 

Because of HPC systems’ cost, complexity, and size, they’re typically located at HPC centers 
and shared among user groups, with batch scheduling to coordinate executions. Users submit 
their jobs to a queue with a request for a certain number of processors and maximum execution 
time. This information is used to determine when to schedule the job. If the time estimate is too 
low, the job will be preemptively terminated; if it’s too high, the job will wait in the queue longer 
than necessary. 

Because these systems are shared resources, scientists are physically remote from the 
computers they use. So, potentially useful tools that were designed to be interactive become 
excessively slow and are soon discarded because they don’t take into account the long latency 
times of remote connections. Unfortunately for scientists, using an HPC system typically means 
interacting with the batch queue. 

Debugging batch-scheduled jobs is also tedious because the queue wait increases the 
turnaround time. Some systems provide “interactive” nodes that let users run smaller jobs 
without entering the batch queue.  Unfortunately, some defects manifest themselves only when 
the code runs on large numbers of processors. 

Center policies that use system utilization as a productivity metric might exacerbate the 
problem of the queue. Because utilization is inversely proportional to availability, policies that 
favor maximizing utilization will have longer waits. As a counterexample, Lincoln Laboratories 
provides interactive access to all users and purchases excess computing capacity to ensure that 
users’ computational needs are met. 
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Conclusion: Remote access precludes the use of certain software tools, and system access 
policies can significantly affect productivity. 

6.1 Mismatches between computational science and SE 
 
     Repeatedly, we saw that SE technologies that don’t take the scientists’ constraints into 
account fail or aren’t adopted. The computer science community isn’t necessarily aware of this 
lesson. Software engineers collaborating with scientists should understand that the resistance to 
adoption of unfamiliar technologies is based on real experiences. For example, concepts such as 
the Capability maturity Model Integration (CMMI) [32] aren’t well matched to the incremental 
nature of HPC development. 
 
Object-oriented languages 

Java is for drinking.—parallel-programming course syllabus 

Developers on a project said, “We’re going to use class library X that will hide all our array 
operations and do all the right things.” … Immediately, you ran into all sorts of issues. First 
of all, C++, for example, was not transportable because compilers work in different ways 
across these machines. 

Object-oriented (OO) technologies are firmly entrenched in the SE community. But in the 
HPC community, C and Fortran still dominate, although C++ is used and one project was 
exploring the use of Java. We also saw some Python use, although never for performance-critical 
code. 

Fortran-like Matlab has seen widespread adoption among scientists, although not necessarily 
in the HPC community.  To date, OO hasn’t been a good fit for HPC, even though the 
community has adopted some concepts. One reason for the lack of widespread adoption might be 
that OO-based languages such as C++ have been evolving much more rapidly than C and Fortran 
in recent years and are therefore riskier choices. 
 
Conclusion: More study is needed to identify why OO has seen such little adoption and whether 
pockets exist in HPC where OO might be suitable. 
 
Frameworks 

If you talk about components in the Common Component Architecture or anywhere else, 
components make very myopic decisions. In order to achieve capability, you need to make 
global decisions. If you allow the components to make local decisions, performance isn’t as 
good. 
     Frameworks provide programmers a higher level of abstraction, but at the cost of adopting the 
framework’s perspective on how to structure the code. Example HPC frameworks include 

• Parallel Object-Oriented Methods and Applications (Pooma), a novel C++ OO framework 
for writing parallel codes that hides the low-level details of parallelism, and 

• Common Component Architecture (CCA), for implementing component-based HPC 
software. 
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Douglass Post and Richard Kendall tell how Los Alamos National Laboratory sought to 
modernize an old Fortran-based HPC code using Pooma. Even though the project spent over 50 
percent of its code-development resources on Pooma, the framework was slower than the 
original Fortran code. It also lacked the flexibility of the lower-level parallel libraries to 
implement the desired physics. 

The scientists in our studies don’t use frameworks. Instead, they implement their own 
abstraction levels on top of MPI to hide low-level details, and they develop their own component 
architecture to couple their subsystems. 

Of all the multi-physics applications we encountered, only one used any aspect of CCA 
technology, and one of that application’s developers was an active member of the CCA initiative. 
When we asked scientists about the lack of reuse of frameworks such as Pooma, they responded 
that such frameworks force them to adapt their problem to the interface supported by the 
framework. They feel that fitting their problem into one of these frameworks will take more 
effort than building their own framework atop lower-level abstractions such as MPI. 

For many frameworks, a significant barrier to their use is that you can’t integrate them 
incrementally. As we noted earlier, a common risk-mitigation strategy is to let competing 
technologies coexist with a code while they’re under evaluation. However, the nature of many 
frameworks makes this impossible. 

 
Conclusion: Scientists have yet to be convinced that reusing existing frameworks will save them 
more effort than building their own from scratch. 
 
Integrated development environments 

Integrative Development Environments (IDEs)  try to impose a particular style of 
development on me, and I am forced into a particular mode.—US government laboratory 
scientist 

We saw no use of integrated development environments (IDEs) such as Eclipse because they 
don’t fit well into the typical workflow of a scientist running a code on an HPC system. For 
example, IDEs have no facilities for submitting jobs to remote HPC queues. IDEs also don’t 
support debugging and profiling for parallel machines. The Eclipse Parallel Tools Platform 
project (www.eclipse.org/ptp) is attempting to provide this functionality. 

In addition, although Eclipse supports HPC languages such as Fortran and C/C++, they’re 
second-class citizens in the Eclipse ecosystem, which focuses on Java-related technologies. 
Whether the larger HPC-system community will adopt these technologies is an open question. 
 
Conclusion: Unless IDEs support remote execution on batch-queued systems, HPC practitioners 
won’t likely adopt them. 
 
But well-matched technologies are adopted 

We’re astrophysicists, which seems to mean we disdain good software engineering practices 
until we get bit … hard … >10 times. Nevertheless, we are starting to learn the importance 
of source control, regression testing, code verification, and more. 

We were using CVS until a few months ago. Now we migrated to Subversion. We’ve had 
version control since day 1. 

http://www.eclipse.org/ptp
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FlashTest, the tool for nightly regression testing of FLASH, has been generalized to be 
usable with any code that uses steps similar to FLASH in building. 

Roccom is an innovative object-oriented, data-centric integration framework developed at 
CSAR [the Center for Simulation of Advanced Rockets] for large-scale numerical scientific 
simulation. 

Scientists do embrace some SE techniques and concepts, when they’re a good fit. Every 
multi-developer project we encountered used a version control system such as CVS or 
Subversion to coordinate changes. We also saw some use of regression-testing methods, 
including tests across platforms and compilers. We saw extensive reuse-in-the-small, in the form 
of reusing externally developed libraries such as preconditioners, solvers, adaptive mesh 
refinement support, and parallel I/O libraries. 

On multi-physics applications involving integration of multiple models maintained by 
independent groups, the scientists devoted much effort on software architecture for integrating 
these components, including using OO concepts. In one case, they explicitly used an OO 
language, C++. In another case, they implemented an OO architectural framework using a non-
OO language—Fortran 90. 

 
Conclusion: Scientists working on large projects see the value of an architectural infrastructure, 
but they’re more disposed to build their own. 

6.2 What SE can do to help scientists 
 
     So, how can we software engineers best apply our knowledge and talents to assist the 
computational-science community? 
 
Practices and processes 

In our study of existing literature, our software environment is not entirely unique. 
However, our desire to provide an environment that supports development from the 
inception of high-risk, high-payoff mathematical software to eventual production quality 
tools is unusual. 

We’re doing a loose version of Extreme Programming or agile. 
As software practitioners, we’re familiar with how the software development process affects 

productivity and quality. We can help in two ways. 
First, we can tailor and transfer existing SE practices to the HPC community. We know from 

observation that larger projects have successfully adopted some mainstream practices. It’s 
important to publicize these successes. Other SE practices, such as inspections, could be 
successfully adapted but haven’t been. Inspections are important here because of the challenges 
of verification and validation, but they must be tailored for this domain. As always, it’s important 
to take into account this community’s environment and constraints to avoid mismatches such as 
the ones we’ve mentioned. 

Second, we can help capture and disseminate computational-science-specific practices that 
have been successfully adopted. 
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Education 
 

Education and outreach to create code that is parallelized—#1 user priority. 

Teaching people to use MPI is not very hard. Writing MPI programs that perform well is 
extremely difficult.  That’s the difference between a first-year grad student and someone 
who has been at the center for four to five years. 

For the professor whose job is to turn out students, the correct metric is, how long does it 
take to take a grad student who just finished, say, their second year of coursework to be a 
productive researcher in the group? That involves a lot more than just actual runtime on 
the machine. It involves time picking up the skills to be a successful developer, picking up 
skills as a designer of parallel algorithms, picking up enough physics to understand the 
problem he’s solving and how parallelism applies to it. 

We observed both parallel-programming classes and HPC practitioners in action. Although 
students learned the basic principles of HPC development in their courses, they weren’t properly 
prepared for the kind of software development they needed to do. So, there was a long learning 
curve to becoming productive, involving the apprenticeship model of working closely with more 
experienced practitioners. 

At the university level, we can develop SE courses specifically for computational scientists. 
We can also work toward other models of disseminating SE knowledge in this domain. For 
example, to improve the quality of students’ assignments, we’ve developed materials for 
teaching them about HPC defects (www.hpcbugbase.org). 
 
Reuse in the large 
 

A lot of our project is getting all this infrastructure put together that we didn’t have [before] 
and doing this from the ground up. A productive thing would be not to have to do that. 

Although we could have painted a gloomy picture here about the prospects of large-scale 
reuse of frameworks, we believe these technologies could reduce programmer effort 
significantly. A framework that’s built on well-supported technologies such as MPI will have 
fewer adoption barriers than a new language. 

As software engineers, we can run case studies of projects that attempt to adopt such 
frameworks. By documenting how and why the adoptions succeed or fail, we can better 
understand the important context variables for successful framework reuse. 

The scope of observations and conclusions we present here are limited to the populations 
with which we interacted. We spoke mainly to computational scientists in either academia or 
government agencies who use computers to simulate physical phenomena. There are many other 
applications for HPC (for example, signal processing, cryptography, and 3D rendering), and 
HPC is also used in industry (for example, movie special effects, automobile manufacturing, and 
oil production). 

Scientific-software systems are growing larger and more complex. We’re finally starting to 
see interaction among the computational-science and SE communities, but more dialogue and 
studies are necessary. We’ve much to learn from each other. 

 

http://www.hpcbugbase.org
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7  CONCLUSIONS 

7.1    Technology Transfer 
 
In early 2009 we were nearing the end of our 4 year contract. Over this past year we had 

several meeting with Dr. Jeffery Vetter of Oak Ridge National Laboratory (ORNL) in order to 
help him identify sites that could participate in future productivity studies. In addition we 
completed any software development and database work to make our tools more portable. Our 
final task was to transfer our tools and support software to ORNL so that Dr. Vetter can use the 
results of our work after our involvement ends. Toward this end we prepared a CD containing 
our software and wrote an installation and user guide for our software. 

On April 22, 2009 we met with Dr. Vetter and helped him install the software on an 
appropriate Linux machine at Oak Ridge. The installation and user guide is reproduced as 
Appendix B of this report. 

Over the course of this study, we achieved the following general results: 
1. We developed a protocol applicable to measuring productivity in the parallel programming 

domain. We have tested this protocol over 25 times at 8 universities across the United States 
(Iowa State University, Massachusetts Institute of Technology, Mississippi State University, 
University of California San Diego, University of California Santa Barbara, University of 
Hawaii, University of Maryland, University of Southern California) (Section 2). 

2. We helped to refine a measure of productivity that incorporates both development time and 
performance into a single productivity number (Section 3). 

3. In order to aid other researchers studying similar environments, we developed an Experiment 
Manager tool for collecting data on the development of parallel programs, as well as a suite 
of tools to aid in the capture and analysis of such data (Section 4). 

4. We studied several large scale development environments (such as the ASC Alliance centers) 
in order to better understand the environment used to build large parallel programming 
applications (Section 5). This included several surveys and interviews with many 
professional programmers in these environments (Section 6). 
 

7.2   Lessons learned 
 
As part of this study we learned much about the development and measurement of 

productivity in high performance computing environments. Many of these results simply confirm 
previous conclusions we have made in our over 25 years of experience with the NASA Goddard 
Space Flight Center’s Software Engineering Laboratory (SEL) from 1976 through 2002 [2]. 
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Some of the more important results are as follows: 
 

1. It is possible to run multi-university studies to collect data usable to evaluate HPC 
productivity. We were able to achieve much of our original purpose for this grant. As 
described in this report, and in the associated 21 publications that this grant produced, we 
have run 25 studies across 8 universities to better understand how HPC programs are 
development. We were able to develop an experimental protocol that could be used at 
multiple locations for the execution, data collection, and evaluation of experimental results. 
But the process is not easy, as the following lessons learned illustrate. 

 

2. The conducting of studies in environments outside of the researcher’s own laboratory is a 
non-trivial exercise. You must have “buy-in” from management, whether this is the faculty 
at other universities or management at the various ASC-Alliance centers or National labs. 
While we did achieve cooperation and run experiments at 8 universities, there were also 
continuing issues with the execution of these experiments.  From our SEL experience: Lesson 
8: Having a shared commitment [between researcher and project management] over 
research and development is vital for success.  Lesson 11: Having upper management 
support is important for continued success. We found all of these true in our HPCS work. 
Getting the various organizations to understand the importance of the HPCS project and our 
role in it was always a stumbling block. We found the various faculty and professional HPC 
technical staff always available at meetings and on the telephone, but that did not always 
translate into actions back at their home locations. They often did not see how the HPCS 
program would affect themselves in their everyday lives. 

One of our failures in the last year of this project was to run various studies at various 
national labs. Because of security issues, we could not be present in their facilities, and we 
could not collect the data and process it at the University of Maryland. Therefore, we needed 
to find individuals who could install, run, and oversee such experiments in their own 
locations. The development of our user guide for the installation and operation of our toolset 
(reproduced as Appendix B in this report) was our way of offloading the work to relevant 
staff at these labs. While there seemed to be interest, the stumbling block always seemed to 
be “Who will pay for it?” As our SEL study observed: Lesson 13: It is difficult to make an 
engineering organization aware of the importance of software engineering to their mission. 
We obviously did not make an appropriate impression on the management of these centers 
that proper software development was an important concern. Raw number of FLOPS was not 
the only concern for solving many of the complex problems needing solutions today. 

3. External events always influence progress and results. In our case we had continuing issues 
with our non-University of Maryland partners understanding the importance of the IRB 
requirements in conducting studies of students or programmers. In almost all cases, we lost at 
least 6 months in setting up an experimental protocol at each new location due to the 
inexperience of the researcher there to fully understand the importance and difficulty of 
securing IRB approval in sufficient time to run the study. Because of this, we were able to 
run fewer studies than we had originally planned. 
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4. It is vital to any such program to understand the role of data collection and the importance 
of securing a baseline in order to be able to measure improvement. One goal for the HPCS 
program was to generate a 10-fold improvement in software productivity from the 2002 base 
year. However, in order to measure what the new petascale-class of machines are capable of, 
we had to know the baseline from 2002. As we learned in our SEL experience: Lesson 1: 
Data collection requires a rigorous process and professional staff. Lesson 5: Establishing a 
baseline of an organization’s products, processes, and goals is critical to any improvement 
program. In our experience with the HPCS program, we were unable to find any site with 
any productivity data from 2002, so a true 10-fold improvement, when the new class of 
machines are placed online, will not be measurable. In one case, one National Lab did have 
access to their 2002 machine, so we planned to run an experiment to try and develop some 
baseline data from that site. But in the process of setting up that experiment, the organization 
did not resolve their IRB issues quickly enough (see lessons learned 3, above), and by the 
time the approval was received, that machine had already been decommissioned. 

 

7.3   Student research 
 

Many students have been supported by this research. One MS degree was partially supported: 
Rola Alameh, 2007; 3 PhD dissertations were partially supported: Lorin Hochstein, 2006, Taiga 
Nakamura, 2007, and Daniela Cruzes, 2007 and one student is currently working on a PhD 
dissertation: Nico Zazaworka. 

7.4   Publications 
 

The following publications were partially sponsored by this grant: 
 
1. Zelkowitz M., V. Basili, S. Asgari, L. Hochstein, J. Hollingsworth, and T. Nakamura, 

“Productivity measures for high performance computers,” Computer Society 
International Symposium on Software Metrics, Como, Italy, September, 2005. 

2. Lorin Hochstein, Development of an empirical approach to building domain-specific 
knowledge applied to high-end computing, PhD dissertation, University of Maryland, 
Computer Science, August 2005. 

3. Hochstein L., V. Basili, M. Zelkowitz, J. Hollingsworth and J. Carver, “Combining self-
reported and automatic data to improve effort measurement,” Joint 10th European 
Software Engineering Conference and 13th ACM SIGSOFT Symposium on the 
Foundations of Software Engineering (ESEC/FSE 2005), Portugal, September, 2005.   

4. Hochstein L., J. Carver, F. Shull, S. Asgari, V. Basili, J. K. Hollingsworth, M. Zelkowitz, 
“HPC Programmer Productivity: A Case Study of Novice HPC Programmers,” 
Supercomputing 2005, Seattle, WA, November 2005 .  

5. Shull F., J. Carver, L. Hochstein, and V. Basili, “Empirical study design in the area of 
high performance computing (HPC),” Computer Society International Symposium on 
Empirical Software Engineering, Noosa Heads, Australia, November, 2005, 305-314. 

6. Lorin Hochstein, Victor R. Basili, "An Empirical Study to Compare Two Parallel 
Programming Models,” 18th ACM Symposium on Parallelism in Algorithms and 
Architectures (SPAA '06). Cambridge, MA, July 2006.  
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7. Taiga Nakamura, Lorin Hochstein, Victor R. Basili, "Identifying Domain-Specific Defect 
Classes Using Inspections and Change History", Proceeding of 5th ACM-IEEE 
International Symposium on Empirical Software Engineering (ISESE'06), Rio de Janeiro, 
Brazil, September, 2006. 

8. Jeffrey C. Carver, Lorin Hochstein, Richard P. Kendall, Taiga Nakamura, Marvin V. 
Zelkowitz, Victor R. Basili and Douglass E. Post, “Observations about Software 
Development for High End Computing,” CTWatch (2)4, November 2006. 

9. Lorin Hochstein, Taiga Nakamura, Victor R. Basili, Sima Asgari, Marvin V. Zelkowitz, 
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11. Andrew Funk, Victor Basili, Lorin Hochstein and Jeremy Kepner, Analysis of parallel 
software development using relative development time productivity metric, CTWatch 
(2)4A:46-51, November 2006.  

12. Taiga Nakamura, “HPCBugBase: an experience base for HPC defects,” Supercomputing 
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13. Rola Alameh, Nico Zazworka, Jeffrey K. Hollingsworth, “Performance Measurement of 
Novice HPC Programmers’ Code,” Workshop on Software Engineering of High 
Productivity Computers 2007, Minneapolis, MN, May 2007. 

14. Taiga Nakamura, Recurring software defects in high end computing, PhD dissertation, 
University of Maryland, Computer Science, May, 2007. 
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9. ACRONYMS 
  
APMS Automated Performance Measurement System 
ASC Accelerated Scientific Computing 
ASCI Accelerated Strategic Computing Initiative 
CAD Computer Aided Design 
CCA Common Component Architecture 
CMMI Capability Maturity Model Integration 
CPU Central Processing Units 
CVS Concurrent Version System 
DARPA Defense Advanced Research Projects Agency 
DBD Data Base Driver 
DBI Data Base Interface 
DBMS Data Base Management System 
DOE Department of Energy 
DB Database 
FLOPS Floating Point Operations per Second 
GDB GNU Project Debugger 
GNU GNU’s not UNIX 
GUI Graphical User Interface 
HEC High End Computing (same as HPC in this report) 
HPC High Performance Computing 
HPCS [DARPA] High Productivity Computing System [Program]  
IDE Integrated Development Environments 
IRB Institutional Review Board 
KLOC Kilo (thousands of) Lines of Code 
MPI Message Passing Interface 
NNSA National Nuclear Security Administration 
OO Object-Oriented 
OpenMP Open Multi-Processing [interface] 
POOMA Parallel Object-Oriented Methods and Applications 
POSIX Portable Operating System Interface 
PRAM Parallel Random Access Machine 
SE Software Engineering 
SEL [NASA Goddard Space Flight Center] Software Engineering Laboratory 
SMP Symmetric Multiprocessors 
UMD University of Maryland 
XMT-C Explicit Multi-threading C 
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APPENDIX A: LIST OF HPC FOLKLORE 

Initial List Updated List 
[1] Use of Parallel machines is not just for more 
CPU power, but also for more total memory or total 
cache (at a given level). 

[1] Many people use parallel machines primarily 
for the large amount of memory available (cache or 
main). 

[2] It's hard to create a parallel language that 
provides good performance across multiple 
platforms. 

[2] It's hard to create a parallel language that 
provides good performance across multiple 
platforms. 

[3] It's easier to get something working in using a 
shared memory model than message passing. 

[3] It's easier to get something working using a 
shared memory model than message passing. 

[4] It's harder to debug shared memory programs 
due to race conditions involving shared regions. 

[4] Debugging race conditions in shared memory 
programs is harder than debugging race conditions 
in message passing programs. 

[5] Explicit distributed memory programming 
results in programs that run faster since 
programmers are forced to think about data 
distribution (and thus locality) issues. 

[5] Explicit distributed memory programming 
results in programs that run faster than shared 
memory programs since programmers are forced to 
think about data distribution (and thus locality) 
issues. 

[6] In master/worker parallelism, the master soon 
becomes the bottleneck and thus systems with a 
single master will not scale. 

[6] In master/worker parallelism, a system with a 
single master has limited scalability because the 
master becomes a bottleneck. 

[7] Overlapping computation and communication 
can result in at most a 2x speedup in a program. 

[7] In MPI programs, overlapping computation and 
communication (non-blocking) can result in at most 
a 2x speedup in a program. 

[8] HPF's data distribution process is also useful for 
SMP systems since it makes programmers think 
about locality issues. 

[8] For large-scale shared memory systems, you 
can achieve better performance using global arrays 
with explicit distribution operations than using 
Open MP. 

[9] Parallelization is easy, Performance is hard. For 
example, identifying parallel tasks in a computation 
tends to be a lot easier than getting the data 
decomposition and load balancing right for 
efficiency and scalability. 

[9] Identifying parallelism is hard, but achieving 
performance is easy. 

[10] It's easy to write slow code on fast 
machines. 

[10] It's easy to write slow code on fast 
machines. Generally, the first parallel 
implementation of a code is slower than its serial 
counterpart. 

[11] Experts often start with incorrect programs 
that capture the core computations and data 
movements. They get these working at high 
performance first, and then they make the code 
functionally correct later. 

[11] Sometimes, a good approach for 
developing parallel programs is to program for 
performance before programming for correctness. 

 [12] It’s better to write a program with fewer 
large messages than many small messages. 
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APPENDIX B: TOOLS DEVELOPED FOR HPCS STUDIES 
 

User Manuals, Installation Guides 
21 April 2009 

 

B.1. Introduction 

For the classroom studies we conducted a whole collection of tools has been developed. They 
can be categorized in the following way Figure 7). 

 
Figure 7: Research process and tool categories 

• capture tools: help to gather data from study participants and join this data in our 
common data source – a relational DB 

• processing tools: calculate / post process data in the DB to retrieve non captured and 
higher level data 

• analyze tools: provide views on the DB in order to support the validation of hypotheses 
and to gain new insights 

• knowledge bases: present the derived knowledge of analyze processes 

Some of these tools have been developed especially for our research purposes and environments 
others are also applicable in similar studies or related research domains. For later ones we 
provide information about functionality, requirements and applicability. They can be 
downloaded or requested on the according tool sites.  

Figure 8 shows the whole system framework and dataflow. 
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B.1.1 About this document 
 
This document provides following information for each of the tools: 

• Purpose of the tool and where it fits into the whole picture 
• Dependencies of the tool that have to be installed prior to the tools installation 
• Further readings about the functionality (mostly covered in student thesis) 
• Technical implementation details, e.g. which languages and techniques were used to 

realize the tool. 
• Installation routine to install the tool on a UNIX-like system. 

 

 
Figure 8: System framework 
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B.1.2 General Requirements 
 

The UNIX environment should at least have following software packages installed: 
• Apache web server that support execution of perl and php > 5 scripts and  Postgresql perl 

module 
• Python > 2.1  
• Java  > 1.5 
• UNIX shell is used for interacting with the compilers. The software uses tcsh/csh or bash 

shell (latest version), but other shells may be acceptable. 
• A graphical windows system (e.g., X-windows, MS Windows) for some of the analysis 

software 
• Postgres > 8.1 (open source) Data Base Management System (DBMS) 

B.1.3 More Information Sources 
 
Can be found on the group website 

• http://hpcs.cs.umd.edu 
 

B.1.4 Contact Information 
 
Prof. Victor R Basili: basili@cs.umd.edu 
Prof. Marvin Zelkowitz: mvz@cs.umd.edu 
Nico Zazworka (developer): nico@cs.umd.edu 
 

B.1.5 Disclaimer 
THIS SOFTWARE IS PROVIDED BY THE DEVELOPERS AND CONTRIBUTORS “AS IS” 
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A 
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGE. 
 

http://hpcs.cs.umd.edu
mailto:basili@cs.umd.edu
mailto:mvz@cs.umd.edu
mailto:nico@cs.umd.edu
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B.2 Database 

B.2.1 Purpose 
The database is the central point for data storage. Almost all applications store or read at some 
point data into or from the database. 

B.2.2 Technical Implementation 
We used postgresql as relational DBMS. The system needs one database (with one schema). The 
67 tables are defined in a create SQL script. Some initial data has to be filled (e.g. login roles).  

B.2.3 Dependencies 
• Postgresql 8.3 or higher has to be installed 
• Rights to create new databases and to restore backup files 

B.2.4 Installation 
• Create a new database with name hpcs 

CREATE DATABASE hpcs 
WITH OWNER = postgres 
ENCODING = 'UTF8'; 

• Use pgrestore the backup file on the installation CD to create the DB 
o pg_restore.exe -h localhost -p 5432 -U postgres -d hpcs -v 

"\software\Database\hpcs_schema.backup" 
• This will create all necessary tables and one Experiment Manager user “Administrator” 

with password “000000”  

B.3 Experiment Manager 

B.3.1 Purpose 
This web based manager provides functionality for different roles (roles are decided based upon 
login role): 

• Study Participant 
o Maintain manually collected effort information 
o Maintain manually collected defect information 

• Professor / Instructor 
o Create assignments (set due date, etc…) 

• Administrator 
o Create classes / experiments 
o Maintain all meta information (e.g. programming languages, clusters,…) 
o Insight into all collected data / classes 

B.3.2 Dependencies 
• Database  
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B.3.3 Further Reading 
Further information about the functionality provided can be found in: 
/doc/ExperimentManager/ainc-exp-mgr-071107.doc 

B.3.4 Technical Implementation 
 
This web based application is implemented as a collection of perl scripts. Your web server has to 
be set up to execute these scripts. 

B.3.5 Installation 
• Copy the umdexpt directory from the installation CD to a directory of your choice (e.g. 

foobar) 
o Set up apache to run scripts in foobar/umdexpt/code/cgi-bin 

 Add a new script alias to your http.conf (typically stored in directory: 
etc/httpd/conf/httpd.conf) 
 

ScriptAlias /umdexpt/cgi-bin/ „/foobar/code/cgi-bin/“ 
 

 Add one alias to the code folder (needed for pictures)  
 
Alias /umdexpt/ “/foobar/code/” 
 

 Enable cgi execution in http conf: 
AddHandler cgi-script .cgi 

 Eventually you have to restart apache: 
/usr/sbin/apachectl –k restart 

o Make sure the perl interpreter is reachable in /usr/local/bin/perl 
 If its not there create a symbolic link: 

ln myperl_directory /usr/local/bin/perl 
• Further you might need to install the Postgres Data Base Driver (DBD::Pg) so that perl 

can communicate via the Data Base Interface (DBI) with the postgresql database: 
o yum install perl-DBD-Pg  

• Now as last step the Configuration.pm in the cgi-bin folder has to set up properly 
o Set up the name of the database you installed earlier 
o Set up the port of the database 
o Set up email information 
o (optionally) set up the Hackystat server 

• If you set up the database with the script described above you now can log in as 
“Administrator” with password “000000” 
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Figure 9: Administrator view of Experiment Manager 

B.4 Raw Data Importer 

B.4.1 Purpose 
Parses the captured data from the instrumentation package (xml files) and saves it into the 
database.  

B.4.2 Dependencies 
• Database 
• Data from UMD Instrumentation  

B.4.3 Further Reading 
• Master Thesis by Nabi Zamani: 

o /docs/RawDataImporter/ThesisNabiZamani.pdf  
• The tool was refactored based on a first implementation by student Andreas Anstock, his 

thesis can be found here: 
o /docs/RawDataImporter/ThesisAndreasAnstock.pdf 

B.4.4 Technical Implementation 
The program is written in Java and uses Swing to create a graphical user interface. Therefore the 
tool should be started within a window system (e.g. MS Windows, XWindows, MacOS, or any 
other system that supports java GUI). 
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B.4.5 Installation  
No installation needed. Simply run the Raw_Data_Importer.jar in 
\software\RawDataImporter\RDI_26SEPT2007\RDI_26SEPT2007 
 

Figure 10: GUI interface of raw data importer 

B.5 DataSanitizer 

B.5.1 Purpose 
This tool allows to copy “sanitized” data from one database to another. This was needed in our 
context to create databases without private information (that could identify students).  
The tool enables the user to define a template (or privacy policy) that decides which data can be 
copied, which data is not copied, and which data is copied after applying transformations. 
 

B.5.2 Dependencies 
• The original hpcs database that serves as source 
• A second database that serves as data sink 
• Both databases have to be portgesql DBMS 

B.5.3 Further Reading 
The according thesis by Nico Zazworka can be found in: 
/docs/DataSanitizer/ThesisNicoZazworka.pdf 

B.5.4 Technical Implementation 
The tool is implemented in java without a GUI. It can be called from the shell.  
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B.5.5 Installation 
No installation needed, to run the program call: 
 
java –cp .;postgresql-8.1-406.jdbc3.jar dataSanitizerController/Sanitizer 
 
This will show you the available options: 
 
Database Sanitizer Tool 0.1 dev 
University Of Maryland 
 

(4) to generate a privacy policy XML file for the source database: 
 Sanitizer g <sourcedbms: user@server:port> <databasename> <privacy policy XML file> 
 (2) to sanitize the data based on a description file in the target database: 
 Sanitizer s [options] <sourcedbms: user@server:port> <targetdbms: user@server:port> 
<databasename for targetdb> <privacy policy XML file> 
 options: -limit n              sets a limit of sanitized rows for each table (for testing) –testset 
filename n   creates a html file to observe n sanitized rows per table after the process 
 (3) to create HTML documentation files for admins and analysts based on a description file: 
 Sanitizer –doc [filename of the description file] [filename for adminDoc] [filename for 
analystDoc] 
 
 (4) to start the java swing gui 
 Sanitizer –gui 
 
 to show the help 
 Sanitizer –h 

B.6 HPCBugBase 

B.6.1 Purpose 
The bug base is a knowledge base, realized as a web wiki. It contains information about 
occurring defects in high performance computing. The knowledge is derived knowledge from the 
studies. 

B.6.2 Dependencies 
None. All data in here is not directly linked to data, it is rather summarized knowledge. 

B.6.3 Further Reading 
/doc/HPCBugBase/DissertationTaigaNakamura.pdf 

B.6.4 Technical Implementation 
The wiki platform is media wiki (the same Wikipedia uses) 

B.6.5 Installation 
No installation is needed, the wiki is available at: http://hpcbugbase.org 
 

http://hpcbugbase.org
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Figure 11: HPCBugBase 
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B.7 APMS - Automated Performance Measurement System 

B.7.1 Purpose 
In order to judge the performance of implementations students developed, we created a system 
that let the student codes run with various input parameters (e.g. size, iterations) and capture the 
performance data automatically. 

B.7.2 Dependencies 
• The system was tailored to one of our clusters, especially to its job submission procedure. 

Therefore it will very likely not run without modifications on another parallel cluster 
• The system measured performance parameters through the PAPI API. 

B.7.3 Further Reading 
This work was Rola Alameh’s Master thesis: 
/doc/APMS/ThesisRolaAlameh.pdf  

B.7.4 Technical Implementation 
The system has a web based user interface that let the analyst submit source code and possible 
input variables. It was realized as java server pages (jsp). 

B.7.5 Installation 
Depending in the webserver configuration the files in /software/APMS/web/ have to be places 
where the web server can execute them as jsp files. The other directories are packages that the 
jsp pages access, they have to be placed in the web folders /lib folder (essentially in the folder 
the java virtual machines looks up packages – the classpath). 
 

 
Figure 12: APMS 
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B.8 CodeVizard 

B.8.1 Purpose 
CodeVizard is a tool to visualize data captured from the studies. It can be used to identify 
common obstacles in computing as well as patterns. 
 

Figure 13: Code Vizard 
 
Usage:  Once the application is started click in the main menu on “Views” -> “Open 
Systemview”. This will bring up a new window – the System View. Here choose a visualization 
directory (usually: “/”), the number of folders (usually “all folders”) and the resolution (choose 
according to study length, typically in terms of days or weeks). Then click on the “go” button. 
Once the view is populated, you can drag with the left mouse button and zoom with the right 
mouse button (and dragging to the left (zoom out) and right (zoom in)).  
Each triangle represents a file version that has been modified. By double-clicking with the left 
mouse button on a triangle the Code View is opened for that file. Notice that this might take 
some while (depending on the file size and number of versions – some minutes). The Code View 
lays out each file version and visual diffs between. The same dragging and zooming features as 
in the System View are available here. 
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Further details about coloring can be found in Figure 14. 
 

Figure 14: Code Vizard color codes 
  

B.8.2 Dependencies 
• Database with captured data in it 

B.8.3 Further Reading 
Thiago worked with the tool to study programmer behavior for NVIDIA Cuda/ GPU cards. His 
analysis provides examples how to use the tool: 
/docs/CodeVizard/ThesisThiagoCraveiro.pdf 

B.8.4 Technical Implementation 
The tool is developed in Java with a GUI frontend. There are several views that show (1) the 
evolution of one source file (CodeView) or (2) the evolution of multiple files in a system 
(SystemView).  
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B.8.5 Installation 
The tool does not need any installation. Copying the files from /software/CodeVizard/ to a 
directory is sufficient. It can be run with following parameters: 
 
 
call pattern: [] means optional  
DBREADER  
 db_url (format: jdbc:postgresql://localhost:5433/hpcs) 
 username  
 password  
 account_id (account_id(s) in the DB: a comma separated list: "66" or  "66,89,108") 
 filename   (one filename to show in the code view or "*wholeAccount*" to show the system 
view)  
 MAX_VERSIONS:int     (max versions to be loaded, set to a very high number if all versions 
should be read) 
 VERSION_JUMPS:int     (take only every nth version, set to 1 to read all versions)  
 ZOOM_FACTOR:float    (horizontal time zoom factor for the system view, the lower the more 
zoomed in, 0.5 gives about 3 weeks on a screen) 
 Shelllogger-file:filename1   (name of the log file to be parsed - usually: name.hist -, needs to be 
placed in the CodeVizard folder, or “null” if no hist file present) 
 Shelllogger-file:filename2   (name of the log file to be parsed - usually: name.hist.2 -, needs to 
be placed in the CodeVizard folder, or “null” if no hist file present) 
 flatten directories: true/false (flattens all directories to one) 
 
Examples: 
 
To visualize the history of one single file of one subject (subject #32), all versions, and two 
history files: 
java -cp ./bin;./lib/postgresql-8.1-406.jdbc3.jar;./lib/piccolox.jar -Xmx512m main.Main 
DBREADER jdbc:postgresql://localhost:5431/hpcs dbUser dbPassword 32 sharks-fishes-mpi.c 
10000 1 1 0.5 student32.hist student32.hist2 true 
 
To visualize the history of all files of one subject (subject #32), all versions, and no history files: 
java -cp ./bin;./lib/postgresql-8.1-406.jdbc3.jar;./lib/piccolox.jar -Xmx512m main.Main 
DBREADER jdbc:postgresql://localhost:5431/hpcs dbUser dbPassword 32 *wholeAccount* 
10000 1 1 0.5 null null true 
 
To visualize the history of all files of one subject (subject #32), every 10th version, and no history 
files: 
java -cp ./bin;./lib/postgresql-8.1-406.jdbc3.jar;./lib/piccolox.jar -Xmx512m main.Main 
DBREADER jdbc:postgresql://localhost:5431/hpcs dbUser dbPassword 32 *wholeAccount* 
10000 10 1 0.5 null null true 
 
To visualize the history of all files of three subjects (subject #32,#64,#77), all versions, and no 
history files (this might take long to load and lot of memory depending on how much data is 
captured for each of the subjects): 
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java -cp ./bin;./lib/postgresql-8.1-406.jdbc3.jar;./lib/piccolox.jar -Xmx512m main.Main 
DBREADER jdbc:postgresql://localhost:5431/hpcs dbUser dbPassword 32,64,77 
*wholeAccount* 10000 1 1 0.5 null null true 
 

B.9 UMDInst 

B.9.1 Purpose 
 
The UMD Instrumentation package (UMDInst) is a collection of wrapper programs that collect 
data from study participants during their programming phases. Whenever subjects are compiling 
or running their codes snapshots of their programs and commands are written to a local log file. 
At the end of the study this log file contains all intermediate versions of the whole development 
process of HPC programs. Beside that it is possible to calculate additional measures based on 
this data, e.g. effort spent for an assignment. 

B.9.2 Installation Guide 

This document describes how to build and set up umdinst, an instrumentation package for 
collecting software development-related data from high-performance computers.  

umdinst must be installed in one user's account (in a classroom study, this would typically be the 
TA's account). Then, it must be enabled at the beginning of the study. Once properly set up, 
umdinst works transparently in background so your work will not be disturbed.  

For any queries about umdinst usage, please contact the hpcs group in the Experimental Software 
Engineering Group at the University of Maryland (hpcs-issues@cs.umd.edu).   

B.9.2.1 How it works 

There are three distinct types of data collection tools in umdinst: wrappers, Hackystat edit 
sensors, and Hackystat shell sensors. Java 1.5 or higher is a requirement in order to use all 
Hackystat sensors. 

Wrappers are programs that replace existing programs used in development. Typically, only 
compilers are "wrapped". However, on systems that use batch scheduling, the job submission 
program is also wrapped. When invoked, the wrappers record data into a logfile, and then invoke 
the original program.  

Hackystat edit sensors are plugins to editors such as Emacs or vi which collect data on files as 
they are being edited.  

Hackystat shell sensors record shell commands. These sensors are from the Hackystat system.  

mailto:hpcs-issues@cs.umd.edu
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B.9.2.2 Setup instructions 

The setup instructions will install the main umdinst package. Each user to be instrumented will 
be required to run an additional script (see below). 

• Make sure you know the identifier that is used in UMD Experiment Manager to refer to 
this class or study. You will need the study identifier to install the software. 

• Extract files from the umdinst.tar.gz file on the HPC machine. 
• Edit the setup.cfg file and modify the following variables  

• mode: the instrumentation mode. Add a new line 'mode=ind'. 
• id: the study identifier used by Experiment Manager 
• javapath: the full path of the "java" program on the machine 
• target_compilers: the location of the compilers to instrument.  
• target_batches: the location of batch job submission programs, if the system uses batch-

scheduling (e.g. PBS, LoadLever) to run jobs. For PBS, this program is usually called 
"qsub". If your system doesn't use batch-scheduling just specify nothing: 'batches ='. 

• target_interactives: programs used to run a job interactively. Typically this is called 
"mpirun" for MPI programs.  

• target_profiler: a program used for profiling an application (currently only one profiler 
may be specified)  

• target_profiler_outputfile: the name of the file generated by the profiler. If specified, the 
data in this file will be captured. (Currently, only supports capturing this data if the file 
name can be specified in this file)  

• target_profile_reporter: a program that takes a file generated by a profiler and generates a 
human-readable report. The instrumentation only supports such profiler reporters when 
they generate their output on standard out (as opposed to a text file).  

• Run "python setup.py install" to generate the wrappers.  

The setup program will create the following files and directories: 

• umdinst/bin - directory which will contain the instrumented programs and a script that 
will configure a user's account for data collection 

• umdinst/lib - directory that will contain the necessary library files 
• umdinst/share - directory that will contain the runtime configuration files  

B.9.2.3 Setting up a user account for instrumentation 

To set up an account for instrumentation, a Hackystat key must be obtained from our Hackystat 
server. If you haven't done so, read the guide for participants for more information.  

Once a Hackystat key has been obtained, the user must run the umdinst/bin/instrument script 
with the Hackystat key as an argument. For example, if the instrumentation is installed in 
/home/lorin/umdinst, and the key is 083ab13846g, then they would invoke the script as follows:  
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$ /abc/umdinst/bin/instrument 083ab13846g 
Configuring your account for data collection 
Hackystat host/key valid. 
Success 
Hackystat host/key valid. 
The .EMACS_FILE_DIR path has been saved. 
Success 
Hackystat host/key valid. 
The HACKYSTAT_VIM_SENSOR_DATA_FILE property has been saved. 
Success 
Downloading Emacs sensor, Version: 7.5.912... 
........ 
..... 
 
Downloading CLI sensor, Version: 7.5.912... 
The ENABLE_CLI_SENSOR property has been saved. 
Success 
Your .cshrc file has been updated. 
Your environment has been set up. 
Please log out and log back in for modifications to take effect. 
(You may see an error message in your initial logout, this is normal) 

This will modify the PATH variable in their .cshrc file, as well as add some Hackystat-related 
files to their directory. The user will need to log out and log back in for the instrumentation to 
take effect.  

All data will be stored in the ~/.umdinst directory under the user’s home directory.  

B.9.2.4 (Optional) capturing program executions 

By default, the instrumentation can only capture program executions if a wrapped program is 
involved in executing them (e.g. mpirun, qsub). However, it is often of interest to capture a run 
of a standalone executable program. To handle this, there is an additional program called run in 
umdinst/bin. This program can be used to execute another program, and capture information. For 
example:  

$ gcc -o myprog myprog.c 
$ run ./myprog 
  

B.9.2.5 Uninstalling the instrumentation 

Currently, there is no automatic way to disable the instrumentation. To do so manually requires 
the following steps: 
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• Delete the ~/.umdinst directory. Important: make sure you backed up the content of 
umdinst/.data. Otherwise, all data will be lost! 

• Delete the umdinst directory where you installed the package 
• Remove the residuals of the instrumentation environment. 

o Editing the ~/.cshrc file to remove the PATH modification to umdinst/bin 
o Editing the ~.emacs file 
o Removing the ~/.vim/plugin/VIMsensor.vim file (or the entire ~/.vim directory) 
o Removing the ~/.logout file 
o Removing the contents of the ~/.hackystat directory. 

B.9.2.6 Setup Configurations 
 
Install configuration options: 

• Instrumentation mode: no default is set (prof, ind, none, or full)  
o prof: Save collected data in instrumentation account only 
o ind: Save collected data in participant's account only 
o full: Store collected data in both 
o none: Do not collect data 

Example: mode=prof (remove comment # in front) 

• Identifier used to refer to this class/study: no default is set  
Example: id=class714 (remove comment # in front) 

• Java executable path (must be Java 1.4 or greater), necessary unless you have disabled 
the Hackystat  
Example: featurejavapath=/usr/java/jdk1.5.0_11/bin/java 

• Compilers to instrument (a colon-separated list)  
Example: target_compilers=/usr/bin/gcc:/usr/bin/mpicc 

• Batch queue submision programs to instrument (a colon-separated list)  
Example: target_batches=/usr/bin/qsub 

• Interactive job submission programs to instrument (a colon-separated list)  
Example: target_interactives=/usr/bin/mpirun 

• Debuggers to instrument. Can be either CLI (e.g gdb) or GUI (e.g. ddd), as a colon-
separated list  
Example: target_debuggers=/usr/bin/gdb 

• Profiler for performance measurement. Currently, the instrumentation can handle only 
one profiler. In addition, the exact name of the profile output file must be known  
Example: target_profiler= 
Example: profiler_outputfile= 
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• Profile reporter that processes raw profile data and generate a report. The instrumentation 
only works if the reporter produces data on standard output  
Example: target_profile_reporter=/usr/bin/gprof 

• Hackystat host (usually you don't have to change the default value). Necessary unless you 
have disabled the Hackystat feature. The default value is set to the UMD Hackystat 
server  
Example: hackystat_host=http://care.cs.umd.edu:8080/ 

• Additional path entries to be added  
Example: additional_path= 

 Default options that should not be changed: 

• Installation directory (usually you don't have to change the default value). The default 
value makes the package compiled 'in-place' in the same directory the package source is 
placed.  
Example: prefix=. 

• File that contains logins and Hackystat keys for users to be instrumented, if you know 
users' Hackystat keys in advance. Each line should contain a login, a tab (\t), and then a 
key. This must be readable and executable by all users who will be instrumented.  
Example: keyfile=keys.txt 

• File that contains the logins of users that should be asked whether they are debugging  
Example: whitelistfile=ask.txt 

• Encoding of the log file contents. base64 is safer for binaries, but quopri (quoted-
printable) makes the file more human-readable, and smaller for most cases (base64, 
quopri or raw)  
Example: encoding=base64 

B.9.2.7 Export data XML file schema 

 Note that the files exported do not have an opening XML declaration.  

  <log>: The file's root node; has no attributes 

• <compile>: A <compile> element is recorded on each compiler invocation from the 
command line and is followed by zero or more <sourcefile> and <headerfile> elements 
containing the same number and kind of sub-elements, also most information duplicates 
with the compile elements (like the timestamps, they are just implemented this way for a 
historical reason); it has the attribute success that has value "1" if the file does not contain 
syxtax errors, else "0". The sub-elements of a compile are described below: 

o <time>: Linux timestamp of compile in number of seconds since midnight of the 
1st of January 1970 UTC (Epoch); no attributes 
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o <timestr>: Same timestamp in human readable format (WWW MMM DD 
HH24:MM:SS YYYY); no attributes 

o <subject>: Unique identifier for the participant; no attributes 
o <command>: Captured command entered from the subject in the system shell, 

contains global path of the called compiler, the source file name(s) and other 
compiler parameters; no attributes 

o <time_interval>: Used to be the compile time in seconds but is not used anymore 
(it now corresponds to the compile's success value); the actual compile time is 
found in the <time_interval> sub-elements of the <sourcefile> and <headerfile> 
elements; no attributes 

• <sourcefile>: Contains source file of the previous compile tag; has an success attribute 
with the same value as the previous compile tag 

o <name>: Name of the sourcefile; no attributes 
o <time>: Same linux timestamp as in compile in number of seconds since 

midnight of the 1st of January 1970 UTC (Epoch); no attributes 
o <timestr>: Same compile timestamp in human readable format (WWW MMM 

DD HH24:MM:SS YYYY); no attributes 
o <subject>: Same unique participant identifier as in compile; no attributes 
o <command>: Same captured command as in compile, contains global path of the 

called compiler, the source file name(s) and other compiler parameters; no 
attributes 

o <time_interval>: Actual compile time in seconds; no attributes 
o <path>: Directory of the source file; no attributes 
o <source>: File content is encoded in the format specified in the encode attribute 

(default value: "base64"); no attributes 
• <job>: Data captured when subject tried to run the last successfully compiled source 

code state; has attributes type with possible values "interactive" when mpirun is used, 
"batch" when a scheduler batch is used and "profiled" when a profiler is used. 

o <subject>: Same unique participant identifier as in compile; no attributes 
o <time>: Linux timestamp of the run in number of seconds since midnight of the 

1st of January 1970 UTC (Epoch); no attributes 
o <timestr>: Same timestamp in human readable format (WWW MMM DD 

HH24:MM:SS YYYY); no attributes 
o <command>: Captured command for the execution of the program, contains 

global path of the called executable or batch file and other program or job batch 
file (scheduler) parameters; no attributes 

o <path>: Directory of the source file; no attributes 
o <time_interval>: Actual run time in seconds; no attributes 

In the case of type "batch" there is an extra element <script> containing the batch script 
with an attribute encode with the encode type. 

In the case of type "profiled" there is an extra element <profiledata> containing data 
about the profiler which cannot be Base 64 encoded. 
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• <profile_report>: This element and its sub-elements contain more detailed information 
about the report generated by the profiler 

o <subject>: Same unique participant identifier as in compile or job; no attributes 
o <time>: Linux timestamp of the call in number of seconds since midnight of the 

1st of January 1970 UTC (Epoch); no attributes 
o <timestr>: Same timestamp in human readable format (WWW MMM DD 

HH24:MM:SS YYYY); no attributes 
o <command>: Captured command for running the profiler; no attributes 
o <path>: Directory in which the call occured; no attributes 
o <time_interval>: Actual run time in seconds; no attributes 
o <contents>: The actual report contents 

• <debug>: This element and its sub-elements contain detailed information about the 
debugger called in the run; attribute success specifies if the run was successful (value 
"1") or if errors were found ("0") 

o <subject>: Same unique participant identifier as in other subject tags; no 
attributes 

o <time>: Linux timestamp of the call in number of seconds since midnight of the 
1st of January 1970 UTC (Epoch); no attributes 

o <timestr>: Same timestamp in human readable format (WWW MMM DD 
HH24:MM:SS YYYY); no attributes 

o <command>: Captured command for running the debugger; no attributes 
o <path>: Directory in which the call occured; no attributes 
o <time_interval>: Actual run time in seconds; no attributes 

B.9.2.8 Example file (1 successful compile + 1 unsuccessful run): 

<log>  

<compile success=”1”> 
 
    <time>1159378054</time> 
    <timestr>Wed Sep 27 13:27:34 2006</timestr> 
    <subject>student01</subject> 
    <command> 
      /clusterhomes/experimenter/umdinst/bin/mpicc MpiLife.c –o MpiLife –lm 
    </command> 
    <time_interval>0</time_interval>  

</compile> 
 
  <sourcefile success=”1”> 
 
    <name>MpiLife.c</name> 
    <time>1159378054</time> 
    <timestr>Wed Sep 27 13:27:34 2006</timestr> 
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    <subject>student01</subject> 
    <command> 
      /clusterhomes/experimenter/umdinst/bin/mpicc MpiLife.c –o MpiLife –lm 
    </command> 
    <time_interval>0.27</time_interval> 
    <path>/clusterhomes/student01/life</path> 
    <source encode=”base64”> 
      [… base64 encoded file…] 
    </source> 
 
  </sourcefile>  

<job type=”interactive” success=”0”> 
 
    <subject>student01</subject> 
    <time>1159379274</time> 
    <timestr>Wed Sep 27 13:47:54 2006</timestr> 
    <command> 
      /clusterhomes/experimenter/umdinst/bin/mpirun –np 2 ./MpiLife life.data.1.txt 5 60 60 
    </command> 
    <path>/clusterhomes/student01/life</path> 
    <time_interval>0.63</time_interval> 
 
  </job>  

</log> 

B.10 Shellogger 
 
The tools allows to log every command that is entered through the Unix shell. It was never used 
in classroom and can is in experimental state. 
 
The developer (Lorin) published it on google code: 
 
http://code.google.com/p/shelllogger/ 
 
 

http://code.google.com/p/shelllogger/
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B.11 Hackystat 
 
We used the Hackystat toolset (developed by Philip Johnson at the University of Hawaii) to 
capture further data from editors as vi and emacs. The visualization tools make at this moment 
no use of the data. However it can be stored in the database with the RawDataImporter. 
 
The complete documentation how to set up an own hackystat server (or to use the one installed at 
the University of Hawaii) can be found on their google code website: 
 
http://code.google.com/p/hackystat/ 
 
 

B.12 Guides 
The next section contain guides that we developed for study participants and faculty/technicians. 
 

B.12.1 HPCS Guide for Students / Study Subjects 

Instructions for participants in HPC studies.  

This is a guide for participants in HPC productivity studies. These instructions apply to 
participants of individual studies or of classroom studies, unless otherwise noted. When different 
instructions apply, the instructions will be marked appropriately: 

• (C) applies to participants in classroom studies 
• (I) applies to participants of individual studies 

Content: 

1. At the beginning of the study 
1.a Create an account on Experiment Manager 
1.b Configure your account for instrumentation 
1.c Register your machine account names in Experiment Manager 
1.d Fill in background questionnaire 

2. During the study 
2.a Logging your effort 
2.b Logging your defects 

3. At the end of the study 
3.a Upload final submission 
3.b Fill in end-of-study questionnaire 

http://code.google.com/p/hackystat/
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At the beginning of the study 

Create an account on Experiment Manager 

Go to our Experiment Manager and create an account. Follow the link "If you are a student 
please enroll here!". Please make sure to have the Study ID (Class ID) for your study before 
registering: 

• (C) If you are part of a classroom study, your professor should provide you with this 
information. 

• (I) If you are part of an individual study please contact hpcs-issues@cs.umd.edu to get 
the appropriate Study ID. 

After you register, you will receive an e-mail with a password to access the Experiment Manager 
system. Also included in this e-mail is a "Hackystat key", which you will need to configure your 
account in the next step.  

Configure your account for instrumentation 

The next step is to configure your account for instrumentation.  

• (C) If you are part of a classroom study, please follow the instructions in this document.  
• (I) If you are part of an individual study, please follow the instructions in this document. 

The complete instrumentation package can be downloaded from the umdinst page. 

Register your machine account names in Experiment Manager 

After you receive your Experiment Manager's account password in your e-mail, log in to the 
Experiment Manager. From the main page, follow the link "Maintain cluster logins and 
Hackystat key". Enter the login account(s) for the machines you will use. Click "save".  

Fill in background questionnaire 

To fill in the background questionnaire, from the main page of Experiment Manager, follow the 
link "Complete Background Questionnaire". Answer the questions in the form and click on 
"send" when you are finished. You will see a confirmation page if your form was successfully 
submitted. 

During the study 

Logging your effort (when you were instructed to do so) 

If you have been asked in your study, use the experiment manager to keep track of how much 
time you spend working on the different assignments. Use the option "Report on your effort" 
from the main page of the Experiment Manager to do this.  

mailto:hpcs-issues@cs.umd.edu
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You can enter the data manually indicating the details of your activities in the appropriate fields 
or you can use the "online Report Tool". The online tool is the easiest way to report your effort. 

• To enter the data manually simply enter the start and stop time, and select the appropriate 
options for the other fields.  

• The link to the "online Report Tool" can be found at the bottom of the Effort Page, where 
it says "Enter new data manually or use the Online Report Tool." The Online Report Tool 
allows you to track your time as your work, you can select different activities and record 
breaks by using the "Start/Break" button. Simply keep the small window on your 
desktop. Every time you start a new action, simply pull down the menu and switch 
activity. If you take a break or switch to another unrelated activity, simply click “break.” 
Remember to click “start” when you return. 

Logging your defects (when you were instructed to do so) 

If you have been asked in your study, use the experiment manager to keep track of any bugs that 
you encounter in your code (that take you more than 5 minutes to fix). Use the option "Report 
Defects" from the main page of the Experiment Manager to do this. Please provide information 
that is accurate and detailed as possible. 

At the end of the study 

Upload final submission 

If you have been asked in your study, use Experiment Manager to upload your final submission 
for the assignment. Use the option "Upload final submission for an assignment" from the main 
page of the Experiment Manager to do this.  

End-of-study questionnaire 

Log in to the experiment manager and fill out the end of study questionnaire. This option will be 
available in the Experiment Manager, after your study was finished. The option is available from 
the main page in Experiment Manager under "Complete end of study questionnaire". Answer the 
questions in the form and click on "send" when you are finished. You will see a confirmation 
page if your form was successfully submitted.  

B.12.2  HPCS Guide for Faculty / Technicians 

The purpose of this document is to present the steps that should be followed to set up an in-class 
experiment. Links to examples and templates are included with each step.  

Each of the steps of the checklist will be of one of the following types and will be tagged 
appropriately: 

• (Do once!): indicates a step that should be performed only once for the whole semester 
for one class.  
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• (Prepare once; do for each assignment!): indicates a step that should be prepared once, 
but should be performed once for each assignment.  

• (Do for each assignment!):  indicates a step that should be performed for each 
assignment. 

Some of the steps will be tagged with the text (Technician). These indicate steps that we suggest 
to be performed by a technician assisting the professor, for example, a TA or system 
administrator.  

Content: 

1. Before class starts 
1.a Complete Human Subjects Forms and submit to your University Review Board (IRB) 
for approval 
1.b Register experiment machine and create class in Experiment Manager 
1.c Specify assignments for the students 
1.d Set up any additional artifacts for assignments 

2. As soon as class starts 
2.a Ensure that the data collection mechanisms are set up 
2.b Have students sign consent forms and register in the HPCS repository 
2.c Have the students complete the Background Questionnaire 

3. When the assignments begin 
3.a Explain the data to be collected and give out the homework assignment(s) 

4. As soon as all assignments are done 
4.a Enable students to fill in the End-of-study Questionnaire 
4.b Make sure all experimental data and questionnaires are sent to UMD 

Before the class starts 

Complete Human Subjects Forms and submit to your University Review Board 
(IRB) for approval (Do once!)  

Federal regulations require that all experiments, regardless of the type, that involve human 
subjects require such approval. This process is neither complicated nor difficult, but depending 
upon the university, this may require several months to accomplish. Start this early if this is your 
first time through the IRB process. Generally the IRB requires the experimenter to fill in forms 
that explain the goals and reasons for running the experiment, describe the tasks that are to be 
done by the subjects, and predict any harm that could come to the subjects as a result of 
participating in the study. We have had no trouble getting these forms approved in previous 
studies. An example of a completed form, based on the requirements at the University of 
Maryland, can be found here along with the attached answers to the required questions on the 
form. The consent form (see step 6) should also be approved by the University.  An example of a 
consent form can be found here. Contact us for help if you are novice at this process.  
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Register experiment machine and create class in Experiment Manager (Do 
once!) 

The goal of this step is to create a record to help you as well as the data collection and analysis 
team keep track of the relevant factors in the experiment.  

Access the Experiment Manager system.  

• If you are not registered in the system yet, you will need to contact the Administrator of 
the system and ask for an account. There is a link in the main page of the Experiment 
Manager to send an e-mail requesting an account. Once an account is created you will 
receive a user id and password. 

• Log in using the account information that you received by e-mail. 

Create an experiment machine. 

• You need to register the machine (HPC hardware) that will be used in the experiment. To 
do so, use the option "Create experiment machine" from the main page of Experiment 
Manager. The screen will show a list of machines already registered.  

o If you have used the machine in previous experiments, you should see it in the 
list. Click on "HOME" to go back to main page. 

o If you don't see the machine in the list. Scroll down and fill in the form at the 
bottom of the page to register the machine. When you are finished click on 
"save".  

Create a class for the experiment. 

• From the main page of Experiment Manager, select the option "create and edit classes". 
You will see the experiments page. 

• Click on "Create new experiment".  
o If you haven't registered the class previously, enter the information about the 

class. This information can be modified later, except for the class identifier that 
will be used by the students to sign up for the system. When you finish entering 
all information click on "save".  

Make sure you inform the students of the class identifier. They will need it to register in 
Experiment Manager.  

Specify assignments for the students (Do for each assignment!)  

In this step an assignment specification needs to be created for each of the different combinations 
of computational models and problems.  
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Register assignment in Experiment Manager 

• First, register your assignment with the HPCS data collection team in the Experiment 
Manager. From the main page, select "Create and edit classes". You will see a list of one 
or more classes previously registered. Click on the icon for Assignments in the row of 
class you want to create an assignment for. This will take you to the Assignments Page.  

• To create a new assignment, click on "Create New Assignments". Fill in the required 
information for the assignment. This information can be edited, so most of this 
information can be filled in later if it is not available yet. When finished entering all 
information, click on "save".  

Create assignment description to be given out to the students  

You need to create an assignment description that can be given out to the students. By reusing 
descriptions from previous classes and staying within a template, you can help us ensure that 
student performance on the same problem will be comparable across classes.  

Below are a series of assignment specification templates with example problem descriptions that 
you can reuse. In those documents, text in black represents the most common way of describing 
the problem – these should be kept “as is” to allow the comparison of results between classes. If 
you feel that a change is necessary, please let the Maryland team know at hpcs-
issues@cs.umd.edu. Fields in green should be filled out according to the local context. Text in 
brackets provides hints as to what type of information should be included. 

• Buffon-Laplace 
• Game of Life 
• Game of Life 2D 
• Matrix Multiplication 
• Parallel Sum 
• Sharks & Fishes 
• One file with all assignment specification templates  

Select which students will do each assignment  

You need to select which students will do each assignment depending on the experimental design 
chosen for your experiment. For more details on experimental designs please see these slides: 
Experimental Designs. Please contact us at hpcs-issues@cs.umd.edu if you need any help 
designing your experiment.  

mailto:hpcs-issues@cs.umd.edu
mailto:hpcs-issues@cs.umd.edu
mailto:hpcs-issues@cs.umd.edu
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Once you decided on the experimental designs and created the assignments for the class, you 
need to indicate in Experiment Manager which students will do each assignment. From the main 
page, select "Create and edit classes". You will see a list of one or more classes previously 
registered. Click on the icon for Assignments in the row of class you want to give assignments to 
students. This will take you to the Assignments Page. For each assignment, click on the icon in 
the column "Students" and make sure that only the students that will be doing that assignment 
are selected. By default, all students will be checked. Uncheck the students who should nott be 
doing that assignment. When you are finished click on "save".   

(Optional) Set up any additional artifacts for assignments (Do for each 
assignment!) 

In this step we suggest you create artifacts that could be handed out to the students together with 
the assignment specification in order to clarify the assignment and/or to ease the grading of the 
assignments. Examples of artifacts that could be handled out are test cases, examples of input 
files, etc.  

Below is a list of examples of artifacts used in classes where the experiments were conducted 
that can be reused. We are starting to create this list, so if you have artifacts that you think could 
be useful for other faculty conducting experiments and would like to make them available from 
this page, please send an e-mail to hpcs-issues@cs.umd.edu.  

Assignments and artifacts: 

• Dense matrix and vector multiplication: Problem[1], Harness[1], Sequential Matlab 
code[1] 

• Game of Life: Problem[1], Harness[1], Sequential Matlab code[1]  
• Sparse matrix and dense vector multiplication: Problem[1], Harness[1], Sequential 

Matlab code[1]  

[1] UCSB - CS240A: Applied Parallel Computing - Winter 2006 - Prof. John R. Gilbert; 
Assistant Viral Shah (http://www.cs.ucsb.edu/~cs240a/) 

As soon as class starts 

(Technician) Ensure that the data collection mechanisms are set up (Prepare 
once; do for each assignment!)  

Ensure that you have the appropriate authorizations to modify the operating environment of the 
machines to be used and to send the student data to the University of Maryland. As with the IRB 
process, the process is not complicated, but does require planning. Do this BEFORE the class 
begins to avoid problems later.  

mailto:hpcs-issues@cs.umd.edu
http://www.cs.ucsb.edu/~cs240a/
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It is necessary to ensure that these automated data collection mechanisms are functioning 
properly and that all data collection forms to be filled by the students are specified prior to 
commencement of the experiment. This step should be performed as soon as the instructor 
knows the accounts that will be used for the class.  

Go to the download page to get the instrumentation package that contains all the necessary files. 
The instructions on how to install and run the instrumentation is found here. The instructor or the 
TA should install the instrumentation package. Each subject will need to run a script to make 
sure their accounts are configured.  Before they start implementing a solution to their problems, 
they should notify the experimenter that the instrumentation package is properly configured.  The 
experimenter should check if the data is being collected and notify the subjects to proceed with 
the implementation once that is verified before each assignment.  

Please make sure to discuss with the system administrator of your organization of the experiment 
and the types of resources that the students will be using during the semester, to prevent 
technical problems and issues.  

Have students sign consent forms and register in the HPCS repository.  (Do 
once!)  

In the step, the experimenter should ask the students to sign the consent forms. An example of a 
consent form can be found here.  

Once the forms are signed, the experimenter should instruct the students participating in the 
experiment to enroll in the Experiment Manager. Instructions on hor to enroll in Experiment 
Manager are provided in the HPCS Guide for Students. They will need the class ID registered in 
the repository, so make sure that that have that information before they register.   

Have the students complete the "Background Questionnaire" (Do once!)   

Prior to beginning work on any of the assignments related to the experiment, each subject should 
log in into Experiment Manager and complete the Background Questionnaire. This form 
provides the researchers with important information about the background and experiences of the 
subjects in a variety of tasks that are related to software development for high performance 
computers. The data provided by the subjects will be used to analyze their final results and look 
for relationships between types of experience and outcomes of the experiment.  

Before you hand out any assignments, make sure every subject has completed their background 
questionnaire.  

When the assignments begin 

Explain the data to be collected and give out the homework assignment(s) 
(Prepare once; do for each assignment!)  
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Make sure that the assignment description is complete and distribute it to the students.  

In addition to any explanation of the programming models and the problems to be implemented, 
the instructors also need to explain to the subjects the effort and defect data that are being 
collected during this study. It is important that the subjects understand how to record their effort. 
The experimenters must be careful at this point not to inform the subjects of the reasons for 
collecting the data as this information may bias their working habits. The students should use the 
reporting options in Experiment Manager . 

As soon as all assignments are done 

Enable students to fill in the "End-of-study Questionnaire" (Do once!) 

At the completion of all of the assignments that are part of the study, the subjects will each 
complete the "Post-Experiment Questionnaire." This questionnaire consists of a series of 
questions to help the researchers better understand what actually occurred during the study. The 
responses to these questions will also help the researchers more accurately analyze the data and 
interpret the results. The questionnaire is available in Experiment Manager, but it will only be 
accessible by the students when the professor enables it. To enable the questionnaire for the 
students: 

• Log into Experiment Manager 
• From the main page chose the option "Create and edit classes" 
• Click on the red icon for "end of study". The icon changes to indicate that this feature has 

been enabled. 
• The students will see a new option in their menu called "Complete end of study 

questionnaire". 

Make sure all experimental data and questionnaires are sent to UMD (Do once!) 

(Technician) E-mail hpcs-issues@cs.umd.edu all the log files from the instrumentation. 
Alternatively you can use the upload scripts function in Experiment Manager to send us the data. 
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